This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289437 The arithmetic function v_2(n,4). 113

%I

%S 0,1,1,1,2,2,2,3,2,3,4,3,4,5,4,4,6,5,5,7,6,6,8,6,6,9,8,7,10,8,8,11,8,

%T 10,12,9,10,13,10,10,14,11,12,15,12,12,16,14,12,17,13,13,18,15,16,19,

%U 14,15,20,15,16,21,16,16,22,17,17,23,20

%N The arithmetic function v_2(n,4).

%D J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).

%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.

%p a:= n-> n*max(seq((floor((d-1-igcd(d, 2))/4)+1)

%p /d, d=numtheory[divisors](n))):

%p seq(a(n), n=2..100); # _Alois P. Heinz_, Jul 07 2017

%t a[n_]:=n*Max[Table[(Floor[(d - 1 - GCD[d, 2])/4] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* _Indranil Ghosh_, Jul 08 2017 *)

%o (PARI)

%o v(g,n,h)={my(t=0);fordiv(n,d,t=max(t,((d-1-gcd(d,g))\h + 1)*(n/d)));t}

%o a(n)=v(2,n,4); \\ _Andrew Howroyd_, Jul 07 2017

%o (Python)

%o from sympy import divisors, floor, gcd

%o def a(n): return n*max([(floor((d - 1 - gcd(d, 2))/4) + 1)/d for d in divisors(n)])

%o print map(a, xrange(2, 101)) # _Indranil Ghosh_, Jul 08 2017

%Y Cf. A289436, A289438.

%K nonn

%O 2,5

%A _N. J. A. Sloane_, Jul 07 2017

%E a(41)-a(70) from _Andrew Howroyd_, Jul 07 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 16:43 EDT 2019. Contains 325225 sequences. (Running on oeis4.)