%I #20 Sep 29 2023 05:01:54
%S 1,1,1,2,2,3,4,6,9,12,17,23,32,45,63,89,124,173,241,336,470,657,919,
%T 1284,1793,2504,3497,4886,6827,9539,13327,18617,26007,36331,50756,
%U 70910,99066,138400,193348,270111,377352,527174,736484,1028898,1437409,2008109,2805394
%N Numbers c_n of Fibonacci-quilt legal decompositions of n.
%H Minerva Catral, P. L. Ford, P. E. Harris, S. J. Miller, et al., <a href="https://arxiv.org/abs/1606.09312">Legal Decompositions Arising from Non-positive Linear Recurrences</a>, arXiv preprint arXiv:1606.09312 [math.CO], 2016.
%H Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, and Dawn Nelson, <a href="https://www.fq.math.ca/Papers1/54-4/CatFrdHarMilNel10202016.pdf">Legal Decompositions Arising From Non-Positive Linear Recurrences</a>, Fibonacci Quart. 54 (2016), no. 4, 348-365. See Table 1. p. 358.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,0,1).
%F Catral et al. give a linear recurrence.
%F G.f.: -(1+x)*(x^2-x+1)/(-1+x+x^5+x^7) . - _R. J. Mathar_, Aug 07 2017
%t LinearRecurrence[{1, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 2, 2, 3, 4}, 50] (* _Jean-François Alcover_, Sep 14 2018 *)
%Y Cf. A289432.
%K nonn
%O 1,4
%A _N. J. A. Sloane_, Jul 06 2017