login
A289379
Primes p that set a new record for the size of the smallest prime q such that q^(p-1) == 1 (mod p^2), i.e., such that p is a base-q Wieferich prime.
0
2, 3, 7, 17, 23, 37, 67, 89, 139, 163, 269, 379, 439, 491, 691, 701, 877, 1009, 1327, 1427, 1669, 2687, 4973, 6367, 7603, 9277, 10531, 11047, 12071, 18313, 29389, 34471, 42703, 42961, 57731, 77773, 87299, 105517, 113957, 118369, 151303, 192631, 205603, 232091
OFFSET
1,1
COMMENTS
For n > 1, primes p such that A125636(i) reaches record values, where i is the index of p in A000040.
PROG
(PARI) minprimb(n) = forprime(q=1, , if(Mod(q, n^2)^(n-1)==1, return(q)))
my(r=0); forprime(p=1, , if(minprimb(p) > r, print1(p, ", "); r=minprimb(p)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Sep 02 2017
EXTENSIONS
a(37)-a(44) from Giovanni Resta, Sep 02 2017
STATUS
approved