OFFSET
0,2
COMMENTS
In general, for m > 0, the expansion of (E_4^3/E_6^2)^m is asymptotic to 2^(8*m) * Pi^(6*m) * exp(2*Pi*n) / (3^m * Gamma(1/4)^(8*m) * Gamma(2*m) * n^(1-2*m)). - Vaclav Kotesovec, Mar 04 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..368
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(-A289367(n)).
a(n) ~ c * exp(2*Pi*n) / n^(143/144), where c = 2^(1/36) * Pi^(1/48) / (3^(1/288) * Gamma(1/144) * Gamma(1/4)^(1/36)) = 0.00699657322237604876174085217217686... - Vaclav Kotesovec, Jul 08 2017, updated Mar 04 2018
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A300025(k)*a(n-k) for n > 0. - Seiichi Manyama, Feb 25 2018
a(n) * A289366(n) ~ -sin(Pi/144) * exp(4*Pi*n) / (144*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[((1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^2)^(1/288), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
CROSSREFS
(E_4^3/E_6^2)^(k/288): this sequence (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288).
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 04 2017
STATUS
approved