login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289298 Expansion of (q*j(q))^(1/8) where j(q) is the elliptic modular invariant (A000521). 18
1, 93, -5661, 741532, -113207799, 19015433748, -3390166183729, 629581913929419, -120437982238038210, 23564574046009042869, -4692899968498921291530, 948024211601180444075739, -193775768073341380441728322 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..424

FORMULA

G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/8).

a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(11/8), where c = 0.2541876595230750963327533839122695596555059904123327336821622582369... = 3^(11/8) * sqrt(2 + sqrt(2)) * Gamma(1/3)^(9/4) * Gamma(3/8) / (2^(35/8) * exp(sqrt(3) * Pi/8) * Pi^(5/2)). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018

a(n) * A299827(n) ~ -3*2^(1/4)*sqrt(1+sqrt(2)) * exp(2*sqrt(3)*Pi*n) / (16*Pi*n^2). - Vaclav Kotesovec, Feb 20 2018

MATHEMATICA

CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/8) / (2*QPochhammer[-1, x])^3, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)

(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/8) + O[q]^13 // CoefficientList[#, q]& (* Jean-Fran├žois Alcover, Nov 02 2017 *)

CROSSREFS

(q*j(q))^(k/24): A106205 (k=1), A289297 (k=2), this sequence (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12).

Cf. A000521, A192731.

Sequence in context: A017809 A017756 A246991 * A093293 A263517 A299827

Adjacent sequences:  A289295 A289296 A289297 * A289299 A289300 A289301

KEYWORD

sign

AUTHOR

Seiichi Manyama, Jul 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 00:41 EDT 2019. Contains 323427 sequences. (Running on oeis4.)