login
A289245
Coefficients of 1/(Sum_{k>=0} [-1 + (k+1)*r](-x)^k), where r = (3 + sqrt(5))/2 = 1 + golden ratio and [ ] = floor.
1
1, 4, 10, 25, 64, 162, 408, 1027, 2584, 6500, 16351, 41132, 103468, 260272, 654709, 1646907, 4142758, 10421013, 26213819, 65940258, 165871197, 417245167, 1049570586, 2640170577, 6641288127, 16706006942, 42023574736, 105709331958, 265909383794, 668888915293
OFFSET
0,2
COMMENTS
Conjecture: the sequence is strictly increasing.
FORMULA
G.f.: 1/(Sum_{k>=0} [(-1 + (k+1)*r](-x)^k), where r = (3 + sqrt(5))/2 = 1 + golden ratio and [ ] = floor.
MATHEMATICA
CoefficientList[Series[1/Sum[Floor[-1 + (k + 1)*(1 + GoldenRatio)] (-x)^k, {k, 0, 100}], {x, 0, 50}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 10 2017
STATUS
approved