login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289225 Number of ways to select 4 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle. 8
0, 13, 859, 9585, 56520, 231635, 749223, 2051819, 4965960, 10924065, 22268395, 42654733, 77575104, 135020535, 226306535, 367085655, 578573168, 889013589, 1335417435, 1965599305, 2840550040, 4037177403, 5651451399, 7801992035, 10634139000, 14324544425, 19086331563 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

COMMENTS

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289231.

LINKS

Heinrich Ludwig, Table of n, a(n) for n = 4..100

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

a(n) = (n^8 -8*n^7 -50*n^6 +556*n^5 +231*n^4 -12388*n^3 +17914*n^2 +86648*n -198528)/24.

From Colin Barker, Jun 30 2017: (Start)

G.f.: x^5*(13 + 742*x + 2322*x^2 + 87*x^3 - 2503*x^4 + 684*x^5 + 560*x^6 - 225*x^7) / (1 - x)^9.

a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.

(End)

EXAMPLE

There are thirteen ways to choose four 2 X 2 X 2 triangles (aaa, ..., ddd) from a 5 X 5 X 5 point grid, for example:

      a           a           a           .

     a a         a a         a a         a a

    b c c       . d .       . . .       . a .

   b b c d     b d d c     b c c d     b c c d

  . . . d d   b b . c c   b b c d d   b b c d d

The other nine possible selections are rotations and reflections of these.

Note: aaa, ..., ddd are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.

MAPLE

A289225:=n->(n^8 -8*n^7 -50*n^6 +556*n^5 +231*n^4 -12388*n^3 +17914*n^2 +86648*n -198528)/24: seq(A289225(n), n=4..50); # Wesley Ivan Hurt, Jun 29 2017

PROG

(PARI) concat(0, Vec(x^5*(13 + 742*x + 2322*x^2 + 87*x^3 - 2503*x^4 + 684*x^5 + 560*x^6 - 225*x^7) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Jun 30 2017

CROSSREFS

Cf. A289222, A289223, A289224, A289226, A289227, A289228, A289231.

Sequence in context: A319509 A189446 A296803 * A331341 A123838 A294793

Adjacent sequences:  A289222 A289223 A289224 * A289226 A289227 A289228

KEYWORD

nonn,easy

AUTHOR

Heinrich Ludwig, Jun 29 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 20:36 EDT 2020. Contains 337374 sequences. (Running on oeis4.)