login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289199 a(n) is the number of odd integers divisible by 13 in the open interval (12*(n-1)^2, 12*n^2). 2
0, 0, 2, 2, 3, 5, 5, 6, 7, 7, 9, 10, 10, 12, 12, 14, 14, 15, 17, 17, 18, 19, 19, 21, 22, 22, 24, 24, 26, 26, 27, 29, 29, 30, 31, 31, 33, 34, 34, 36, 36, 38, 38, 39, 41, 41, 42, 43, 43, 45, 46, 46, 48, 48, 50, 50, 51, 53, 53, 54, 55, 55, 57, 58, 58, 60, 60, 62, 62, 63, 65 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence has the form (0+12k, 0+12k, 2+12k, 2+12k, 3+12k, 5+12k, 5+12k, 6+12k, 7+12k, 7+12k, 9+12k, 10+12k, 10+12k) for k >= 0.

Theorems: A) Generally for an interval (2*m*(n-1)^2,2*m*n^2) and a divisor d with 2*m < d there is a unique d-length form (e_i+2*m*k)_{i=0..d-1, k>=0} with e_i in [0,2*m]; here m = 6, d = 13.

B) Sum_{i=0..d-1}e_i = m*(d-2); here 66 = 6*(13-2).

Proof:

A) In d consecutive intervals

(2*m*(n-1)^2,2*m*(n+2)^2) there are m*d*(2*k+d) consecutive odd numbers and therefore m*(2*k+d) multiples of d where k=floor((n-1)/d).

B) With initial value a(0)=0 we have a(d)=2*m and thus Sum_{i=0..d-1} e_i = Sum_{i=1..d}a(i)-a(d) = m(2*0+d)-2*m = m*(d-2). Q.E.D.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,1,-1).

FORMULA

a(n + 13*k) = a(n) + 12*k.

a(n) = 12n/13 + O(1). - Charles R Greathouse IV, Jun 29 2017

From Colin Barker, Jul 03 2017: (Start)

G.f.: x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)).

a(n) = a(n-1) + a(n-13) - a(n-14) for n>13.

(End)

MATHEMATICA

Table[Count[Mod[Table[2(6(n-1)^2 +k)-1, {k, 12 n-6}], 13], 0], {n, 0, 70}]

PROG

(PARI) a(n)=(12*n^2+12)\26 - (12*n^2-24*n+25)\26 \\ Charles R Greathouse IV, Jun 29 2017

(PARI) concat(vector(2), Vec(x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)) + O(x^100))) \\ Colin Barker, Jul 03 2017

CROSSREFS

Cf. A004523, A288156, A289120, A289122, A289133, A289139, A289195.

Sequence in context: A293522 A319476 A140200 * A029039 A316185 A131429

Adjacent sequences:  A289196 A289197 A289198 * A289200 A289201 A289202

KEYWORD

nonn,easy

AUTHOR

Ralf Steiner, Jun 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 02:39 EST 2019. Contains 320140 sequences. (Running on oeis4.)