login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289068 Recurrence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k) with a(0)=1, a(1)=-2. 15
1, -2, -2, 2, 14, 10, -170, -670, 2270, 30490, 26950, -1435150, -8513650, 59564650, 1050090550, 486517250, -113618013250, -831340535750, 10136160835750, 208459859695250, -121723298991250, -41568491959973750, -338549875950886250, 6637158567781561250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

One of a family of integer sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..200

S. Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.

FORMULA

E.g.f.: -sqrt(5)*tanh(z*sqrt(5)/2 - arccosh(sqrt(5)/2)).

E.g.f. for the sequence (-1)^(n+1)*a(n): -sqrt(5)*tanh(z*sqrt(5)/2 + arccosh(sqrt(5)/2)).

PROG

(PARI) c0=1; c1=-2; nmax = 200;

  a=vector(nmax+1)); a[1]=c0; a[2]=c1;

  for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k]));

  a

(Python)

from sympy import binomial

l=[1, -2]

for n in xrange(2, 51): l+=[sum([binomial(n - 2, k)*l[k]*l[n - 1 - k] for k in xrange(n - 1)]), ]

print l # Indranil Ghosh, Jun 30 2017

CROSSREFS

Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289067 (3,-1), A289069 (3,-2), A289070 (0,3).

Sequence in context: A077991 A049148 A183584 * A063898 A074052 A129409

Adjacent sequences:  A289065 A289066 A289067 * A289069 A289070 A289071

KEYWORD

sign

AUTHOR

Stanislav Sykora, Jun 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 16:53 EDT 2018. Contains 315347 sequences. (Running on oeis4.)