login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289067 Recurrence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k) with a(0)=3, a(1)=-1. 15
3, -1, -3, -8, -15, 14, 357, 2302, 7725, -23626, -655383, -6082538, -26422935, 192117134, 5645490477, 65726212222, 317363920005, -4755023055706, -146987610294063, -1994869987891418, -9440043721651455, 280432883707929854, 9053536431109958997, 136677605454588278542 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

One of a family of integer sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..200

S. Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.

FORMULA

E.g.f.: -sqrt(11)*tanh(z*sqrt(11)/2 - arccosh(sqrt(11/2))).

E.g.f. for the sequence (-1)^(n+1)*a(n): -sqrt(11)*tanh(z*sqrt(11)/2 + arccosh(sqrt(11/2))).

MATHEMATICA

a[n_] := a[n] = Sum[Binomial[n-2, k]*a[k]*a[n-k-1], {k, 0, n-2}]; a[0] = 3; a[1] = -1; Array[a, 24, 0] (* Jean-Fran├žois Alcover, Jul 20 2017 *)

PROG

(PARI) c0=3; c1=-1; nmax = 200; a=vector(nmax+1); a[1]=c0; a[2]=c1; for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k])); a

CROSSREFS

Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289068 (1,-2), A289069 (3,-2), A289070 (0,3).

Sequence in context: A068958 A238106 A087000 * A010282 A119265 A143453

Adjacent sequences:  A289064 A289065 A289066 * A289068 A289069 A289070

KEYWORD

sign

AUTHOR

Stanislav Sykora, Jun 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 16:53 EDT 2018. Contains 315347 sequences. (Running on oeis4.)