Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Jul 06 2017 09:27:24
%S 1,1,9,471,82899,36913581,34878248649,62045165964951,
%T 190543753640526939,945931782247964900901,7209377339218632463758129,
%U 80920117567254715984058542191,1292645840976784584918218615760819,28557854803885245556927129118200208781
%N Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks.
%C The semilengths of Dyck paths counted by a(n) are elements of the integer interval [3*n-1, n*(n+1)] for n>0.
%H Alois P. Heinz, <a href="/A289054/b289054.txt">Table of n, a(n) for n = 0..60</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%e . a(2) = 9: /\/\ /\/\ /\/\ /\ /\
%e . /\/\/ \ /\/ \/\ / \/\/\ /\/\/ \/ \
%e .
%e . /\ /\ /\ /\ /\ /\ /\ /\ /\ /\
%e . /\/ \/\/ \ /\/ \/ \/\ / \/\/\/ \ / \/\/ \/\ / \/ \/\/\ .
%p b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
%p `if`(v<2, 0, add(b(n-j, i, v-1)*(binomial(i, 2)*
%p binomial(j-1, i-3)), i=1..min(j+2, n-j))))
%p end:
%p a:= n-> `if`(n=0, 1, add(b(w, 2, n), w=3*n-1..n*(n+1))):
%p seq(a(n), n=0..15);
%t b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1] Binomial[i, 2] Binomial[j - 1, i - 3], {i, Min[j + 2, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 2, n], {w, 3*n - 1, n(n + 1)}]]; Table[a[n], {n, 0, 15}] (* _Indranil Ghosh_, Jul 06 2017, after Maple code *)
%Y Column k=2 of A288972.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jun 23 2017