login
Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
9

%I #25 Mar 08 2018 06:40:56

%S 264,170148,47083784,21265517460,8675419078920,3954919534878884,

%T 1798749087973466376,846151096977050604564,402076970410851910136072,

%U 193920175271783317402925220,94372564731126150526919627016,46330721199213296384252696382356

%N Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

%C This sequence is related to the identity: E_4*E_6 = E_10.

%H Seiichi Manyama, <a href="/A289024/b289024.txt">Table of n, a(n) for n = 1..367</a>

%F a(n) = A110163(n) + A288851(n) = 20 + (1/n) * (Sum_{d|n} A008683(n/d) * (1/3 * A288261(d) + 1/2 * A288840(d))).

%F a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289639(d). - _Seiichi Manyama_, Jul 09 2017

%F a(n) ~ exp(2*Pi*n) / n. - _Vaclav Kotesovec_, Mar 08 2018

%Y Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), this sequence (k=10), A288990/A288989 (k=12), A289029 (k=14).

%Y Cf. A008683, A288261 (E_6/E_4), A288840 (E_8/E_6), A289639.

%K nonn

%O 1,1

%A _Seiichi Manyama_, Jun 22 2017