login
A288949
Numbers that are both the sum of two consecutive primes and the sum of two consecutive semiprimes.
1
24, 36, 100, 112, 120, 240, 288, 320, 372, 472, 532, 576, 600, 810, 828, 864, 882, 924, 990, 1088, 1104, 1164, 1180, 1208, 1236, 1284, 1360, 1392, 1482, 1508, 1560, 1584, 1620, 1632, 1692, 1740, 1818, 1900, 1920, 1938
OFFSET
1,1
COMMENTS
Positions of a(n) in A001043 and A118717: {5, 4}, {7, 6}, {15, 17}, {16, 19}, {17, 21}, {30, 39}, {34, 48}, {37, 53}, {42, 60}, {51, 77}.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
24 is a term because 24 = 11+13 and 24 = 10+14.
Alternatively, 24 = A001043(5) = A118717(4), 36 = A001043(7) = A118717(6).
MATHEMATICA
sp=Select[Range[4, 1000], 2==PrimeOmega[#]&]; Select[Table[sp[[k]]+sp[[k+1]], {k, 100}], #==(p=NextPrime[#/2, -1])+NextPrime[p]&]
Module[{nn=2000, sp}, sp=Total/@Partition[Select[Range[nn], PrimeOmega[#]==2&], 2, 1]; Intersection[ sp, Total/@Partition[Prime[Range[nn]], 2, 1]]] (* Harvey P. Dale, Jul 31 2023 *)
PROG
(PARI) issemi(n)=bigomega(n)==2
nextsp(x)=x=ceil(x); while(!issemi(x), x++); x
has(n)=precprime((n-1)/2)+nextprime(n/2)==n
list(lim)=my(v=List(), last=4, t); forfactored(n=6, nextsp(lim\2), if(vecsum(n[2][, 2])==2, if(has(t=last+n[1]) && t<=lim, listput(v, t)); last=n[1])); Vec(v) \\ Charles R Greathouse IV, Feb 19 2018
CROSSREFS
Intersection of A001043 and A118717.
Sequence in context: A347422 A278474 A327946 * A108190 A185489 A303884
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 20 2017
STATUS
approved