login
A288907
Primes p whose distance from the next prime and from the previous prime is less than log(p).
1
71, 101, 103, 107, 109, 193, 197, 227, 229, 281, 311, 313, 349, 433, 439, 443, 461, 463, 503, 563, 569, 571, 593, 599, 601, 607, 613, 617, 643, 647, 653, 659, 677, 733, 739, 757, 823, 827, 857, 859, 881, 883, 941, 947, 971, 977, 1013, 1019, 1033, 1063, 1091, 1093
OFFSET
1,1
COMMENTS
Primes preceded and followed by less-than-average prime gaps (by the Prime Number Theorem, see link).
LINKS
Eric Weisstein's World of Mathematics, Prime Number Theorem
FORMULA
A151800(a(n)) - log(a(n)) < a(n) < A151799(a(n)) + log(a(n)).
EXAMPLE
n = 23 is not a term because 23 - 19 > log(23) = 3.13...
n = 71 is a term because log(71) = 4.71.. and 73 - log(71) < 71 < 67 + log(71).
MATHEMATICA
Select[Range[2, 220] // Prime, Max[ Abs[# - NextPrime[#, {-1, 1}]]] < Log[#] &] (* Giovanni Resta, Jun 19 2017 *)
PROG
(Sage) [n for n in prime_range(3, 1300) if next_prime(n)-n<log(n) and n-previous_prime(n)<log(n)] #
(PARI) is(n) = ispseudoprime(n) && n-precprime(n-1) < log(n) && nextprime(n+1)-n < log(n) \\ Felix Fröhlich, Jun 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Giuseppe Coppoletta, Jun 19 2017
STATUS
approved