

A288815


Paired Jacobsthal function applied to the product of the first n primes.


1



2, 6, 18, 30, 66, 150, 192, 258, 366, 450, 570, 708, 894, 1044, 1284, 1422, 1656, 1902, 2190, 2460, 2622
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There is a conjecture about an upper bound on this sequence. Let p_n be the nth prime. If a(n) < p_n^2  p_n holds for n>=3 then Goldbach's conjecture and the twin prime conjecture hold as well.


LINKS

Table of n, a(n) for n=1..21.
Mario Ziller, John F. Morack, Divisibility in paired progressions, Goldbach's conjecture, and the infinitude of prime pairs, arXiv:1706.00317 [math.NT], 2017.
Mario Ziller, John F. Morack, On the computation of the generalised Jacobsthal function for paired progressions, arXiv:1706.03668 [math.NT], 2017.


FORMULA

a(n) = 6*A072753(n) + 6, for n>=3.


CROSSREFS

Cf. A072753, A048670.
Sequence in context: A066286 A324541 A197168 * A277200 A277324 A034881
Adjacent sequences: A288812 A288813 A288814 * A288816 A288817 A288818


KEYWORD

hard,more,nonn


AUTHOR

Mario Ziller, Jun 17 2017


STATUS

approved



