login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288791 Number of blocks of size >= nine in all set partitions of n. 2
1, 11, 122, 1245, 12325, 121136, 1195147, 11915997, 120572790, 1241499241, 13030331671, 139549798524, 1525923634907, 17041290249637, 194394900237176, 2264977282222371, 26951265841776186, 327445918493429897, 4060993235341162405, 51396034231430455550 (list; graph; refs; listen; history; text; internal format)
OFFSET

9,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 9..575

Wikipedia, Partition of a set

FORMULA

a(n) = Bell(n+1) - Sum_{j=0..8} binomial(n,j) * Bell(n-j).

a(n) = Sum_{j=0..n-9} binomial(n,j) * Bell(j).

MAPLE

b:= proc(n) option remember; `if`(n=0, 1, add(

      b(n-j)*binomial(n-1, j-1), j=1..n))

    end:

g:= proc(n, k) option remember; `if`(n<k, 0,

      g(n, k+1) +binomial(n, k)*b(n-k))

    end:

a:= n-> g(n, 9):

seq(a(n), n=9..30);

MATHEMATICA

Table[Sum[Binomial[n, j] BellB[j], {j, 0, n - 9}], {n, 9, 30}] (* Indranil Ghosh, Jul 06 2017 *)

PROG

(Python)

from sympy import bell, binomial

def a(n): return sum([binomial(n, j)*bell(j) for j in xrange(n - 8)])

print [a(n) for n in xrange(9, 31)] # Indranil Ghosh, Jul 06 2017

CROSSREFS

Column k=9 of A283424.

Cf. A000110.

Sequence in context: A176595 A067218 A293805 * A049666 A163462 A041222

Adjacent sequences:  A288788 A288789 A288790 * A288792 A288793 A288794

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jun 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)