This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A288791 Number of blocks of size >= nine in all set partitions of n. 2
 1, 11, 122, 1245, 12325, 121136, 1195147, 11915997, 120572790, 1241499241, 13030331671, 139549798524, 1525923634907, 17041290249637, 194394900237176, 2264977282222371, 26951265841776186, 327445918493429897, 4060993235341162405, 51396034231430455550 (list; graph; refs; listen; history; text; internal format)
 OFFSET 9,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 9..575 Wikipedia, Partition of a set FORMULA a(n) = Bell(n+1) - Sum_{j=0..8} binomial(n,j) * Bell(n-j). a(n) = Sum_{j=0..n-9} binomial(n,j) * Bell(j). MAPLE b:= proc(n) option remember; `if`(n=0, 1, add(       b(n-j)*binomial(n-1, j-1), j=1..n))     end: g:= proc(n, k) option remember; `if`(n g(n, 9): seq(a(n), n=9..30); MATHEMATICA Table[Sum[Binomial[n, j] BellB[j], {j, 0, n - 9}], {n, 9, 30}] (* Indranil Ghosh, Jul 06 2017 *) PROG (Python) from sympy import bell, binomial def a(n): return sum([binomial(n, j)*bell(j) for j in xrange(n - 8)]) print [a(n) for n in xrange(9, 31)] # Indranil Ghosh, Jul 06 2017 CROSSREFS Column k=9 of A283424. Cf. A000110. Sequence in context: A176595 A067218 A293805 * A049666 A163462 A041222 Adjacent sequences:  A288788 A288789 A288790 * A288792 A288793 A288794 KEYWORD nonn AUTHOR Alois P. Heinz, Jun 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)