login
A288664
Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 493", based on the 5-celled von Neumann neighborhood.
4
1, 1, 4, 3, 24, 7, 112, 15, 480, 31, 1984, 63, 8064, 127, 32512, 255, 130560, 511, 523264, 1023, 2095104, 2047, 8384512, 4095, 33546240, 8191, 134201344, 16383, 536838144, 32767, 2147418112, 65535, 8589803520, 131071, 34359476224, 262143, 137438429184
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jun 13 2017: (Start)
G.f.: (1 + x - 3*x^2 - 4*x^3 + 10*x^4 - 8*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)).
a(n) = 7*a(n-2) - 14*a(n-4) + 8*a(n-6) for n>6.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 493; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jun 13 2017
STATUS
approved