OFFSET
1,3
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
G.f.: Sum_{k>=1} tau(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(tau(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
Multiplicative with a(2^e) = (e+1)*(2-e)/2, and a(p^e) = (e+1)*(e+2)/2 for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Sep 14 2023: (Start)
Dirichlet g.f.: (1- 1/2^(s-1)) * zeta(s)^3.
Sum_{k=1..n} a(k) ~ log(2) * n * (log(n) + 3*gamma - 1 - log(2)/2), where gamma is Euler's constant (A001620). (End)
MAPLE
with(numtheory): seq(add((-1)^(n/a+1)*tau(a), a=divisors(n)), n=1..85); # Paolo P. Lava, Aug 24 2018
MATHEMATICA
Table[Sum[(-1)^(n/d + 1) DivisorSigma[0, d], {d, Divisors[n]}], {n, 85}]
nmax = 85; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
f[p_, e_] := If[p == 2, (e + 1)*(2 - e)/2, (e + 1)*(e + 2)/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, (-1)^(n/d+1)*numdiv(d)); \\ Michel Marcus, Aug 24 2018
CROSSREFS
KEYWORD
AUTHOR
Ilya Gutkovskiy, Aug 23 2018
STATUS
approved