login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288485 Expansion of (E_4(q) - 28*E_4(q^2) + 63*E_4(q^3) - 36*E(q^6)) / 240. 1
1, -19, 91, -179, 126, -1, 344, -1459, 2521, -2394, 1332, -737, 2198, -6536, 11466, -11699, 4914, 485, 6860, -22554, 31304, -25308, 12168, -6625, 15751, -41762, 68131, -61576, 24390, -126, 29792, -93619, 121212, -93366, 43344, -15803, 50654, -130340 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Define f(q) = (eta(q^2)*eta(q^3))^7/(eta(q)*eta(q^6))^5, g(q) = Sum_{n>=1} a(n)/n^3 * q^n and t(q) = (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3))^12.

And define the sequence {b(n)} = {0, 6, 351/4, 62531/36, ...} as the solutions of the recursion (n+1)^3*b(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*b(n) - n^3*b(n-1), n >= 1 with b(0) = 0, b(1) = 6.

The following equation holds: 6*f(q)*g(q) = Sum_{n>=0} b(n)*t(q)^n.

REFERENCES

D. Zagier, "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

Wikipedia, Apery's theorem.

EXAMPLE

6*f(q)*g(q)

= 6*(1 + 5*q + 13*q^2 + 23*q^3 + 29*q^4 + 30*q^5 + 31*q^6 + 40*q^7 + ... )

  *(q - 19/8*q^2 + 91/27*q^3 - 179/64*q^4 + 126/125*q^5 - 1/216*q^6 + 344/343q^7 - ... )

= 6*q + 63/4*q^2 + 971/36*q^3 + 10679/288*q^4 + 1126103/36000*q^5 + 105401/2400*q^6 + 536870027/12348000*q^7 + ...

= 6 * (q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - ... )

  + 351/4 * (q^2 - 24*q^3 + 276*q^4 - 2024*q^5 + 10626*q^6 - 42528*q^7 + ... )

  + 62531/36 * (q^3 - 36*q^4 + 630*q^5 - 7140*q^6 + 58905*q^7 - ... )

  + 11424695/288 * (q^4 - 48*q^5 + 1128*q^6 - 17296*q^7 + ... )

  + 35441662103/36000 * (q^5 - 60*q^6 + 1770*q^7 - ... )

  + ...

PROG

(Ruby)

def A001158(n)

  s = 0

  (1..n).each{|i| s += i * i * i if n % i == 0}

  s

end

def A288485(n)

  a = [0] + (1..n).map{|i| A001158(i)}

  ary = a.clone

  (1..n).each{|i|

    ary[i] -= 28 * a[i / 2] if i % 2 == 0

    ary[i] += 63 * a[i / 3] if i % 3 == 0

    ary[i] -= 36 * a[i / 6] if i % 6 == 0

  }

  ary[1..-1]

end

p A288485(100)

CROSSREFS

{b(n)} = {A059415(n)/A059416(n)} = {0, 6, 351/4, 62531/36, ...}.

Cf. A001158 (sigma_3(n)), A004009 (E_4), A006353 (f(q)), A226235 (t(q)).

Sequence in context: A038653 A043232 A044012 * A214532 A118294 A157098

Adjacent sequences:  A288482 A288483 A288484 * A288486 A288487 A288488

KEYWORD

sign

AUTHOR

Seiichi Manyama, Jun 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 15:43 EST 2017. Contains 295905 sequences.