login
A288473
1-limiting word of the mapping 00->0101, 1->011, starting with 00.
6
0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0
OFFSET
1
COMMENTS
Iterates, starting with 00:
00
0101
00110011
01010110110101011011
00110011001101100110110011001100110110011011
The 1-limiting word is the limit taken over odd-numbered iterations of the mapping.
Conjecture: the number of letters (0's and 1's) in the n-th iterate is given by A288476(n).
LINKS
EXAMPLE
First two odd-numbered iterates of the mapping:
0101
01010110110101011011
MATHEMATICA
s = {0, 0}; w[0] = StringJoin[Map[ToString, s]];
w[n_] := StringReplace[w[n - 1], {"00" -> "0101", "1" -> "011"}]
Table[w[n], {n, 0, 8}]
st = ToCharacterCode[w[11]] - 48 (* A288473 *)
Flatten[Position[st, 0]] (* A288474 *)
Flatten[Position[st, 1]] (* A288475 *)
Table[StringLength[w[n]], {n, 1, 35}] (* A288476 conjectured *)
CROSSREFS
Cf. A288474, A288475, A288476, A288551 (0-limiting word).
Sequence in context: A082446 A191156 A144611 * A130853 A353810 A115516
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 11 2017
STATUS
approved