login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288264 a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 3. 11
10369994005800, 1461629029629340, 99727841192820016, 4470547991985864322, 149789855223187292608, 4031165546220945277040, 91230456810047671200128, 1792206112041706943912462, 31276917257222840819283888, 493477269339182312960416344, 7136207296287499744197970400, 95626920613336304647976494116 (list; graph; refs; listen; history; text; internal format)
OFFSET

15,1

LINKS

Table of n, a(n) for n=15..26.

Gheorghe Coserea, The g.f. as a rational function of y=A000108(x)

Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.

MATHEMATICA

Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;

Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

a[n_] := Q[n, 10, 3];

Table[a[n], {n, 15, 26}] (* Jean-François Alcover, Oct 17 2018 *)

CROSSREFS

Rooted maps of genus 3 with n edges and f faces for 1<=f<=10: A288075 f=1, A288076 f=2, A288077 f=3, A288078 f=4, A288079 f=5, A288080 f=6, A288081 f=7, A288262 f=8, A288263 f=9, this sequence.

Column 10 of A269923.

Cf. A000108.

Sequence in context: A112432 A230100 A122966 * A127225 A257141 A250492

Adjacent sequences: A288261 A288262 A288263 * A288265 A288266 A288267

KEYWORD

nonn

AUTHOR

Gheorghe Coserea, Jun 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 20:13 EST 2022. Contains 358421 sequences. (Running on oeis4.)