%I #20 Jun 15 2018 10:14:34
%S 1,2,3,8,21,38,55,80,144,168,174,195,314,377,682,987,2584,6360,6765,
%T 12238,13301,17711,34985,46368,54096,66483,87849,121393,219602,317811,
%U 684704,832040,1486717,2178309,3325460,3940598,5702887,6151102,10008701,14930352
%N Positive integers n such that the Fibonacci (or Zeckendorf) representation of n^2 is a palindrome.
%C The sequence is infinite because F(2n)^2 = A049684(n) has Fibonacci (or Zeckendorf) representation (1000)^(n-1) 1.
%H Giovanni Resta, <a href="/A288252/b288252.txt">Table of n, a(n) for n = 1..60</a>
%e 38 is in the sequence because 38^2 = 1444 has Fibonacci representation 101000101000101, which is a palindrome.
%p for n from 1 do
%p zeck := A014417(n^2) ;
%p if isA002113(zeck) then
%p printf("%d,\n",n);
%p end if;
%p end do: # _R. J. Mathar_, Jun 16 2017
%Y Cf. A014417, which explains Fibonacci representation. Cf. A094202.
%K nonn
%O 1,2
%A _Jeffrey Shallit_, Jun 07 2017
%E a(35)-a(39) from _Alois P. Heinz_, Jun 14 2018
%E a(40) from _Giovanni Resta_, Jun 15 2018