This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287938 Integers associated with moments of Rvachëv function. 4
 1, 1, 19, 2915, 2788989, 14754820185, 402830065455939, 54259734183964303995, 34931036957548128175343565, 104968042559556881090071537121985, 1445701512369903326110289606343988638195, 89942525814858602265845303890518923811304544595, 24979493321562411847493262443987087581059026281953954525 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is equal to the product of (2n-1)!! Product_{k=1..n}(2^(2k)-1)) and A287936(n)/A287937(n), the moment of the Rvachëv function. The Rvachëv function is related to the Fabius function; up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1, where F is the Fabius function. LINKS J. Arias de Reyna, An infinitely differentiable function with compact support:Definition and properties, arXiv:1702.05442 [math.CA], 2017. J. Arias de Reyna, Arithmetic of the Fabius function, arXiv:1702.06487 [math.NT], 2017. FORMULA a(n) = (2n-1)!!*Product_{k=1..n}(2^(2k)-1))*A287936(n)/A287937(n). MATHEMATICA c[0] = 1; c[n_] := c[n] =    Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1)); a[n_] := a[n] = c[n] (2 n + 1)!! Product[(2^(2 k) - 1), {k, 1, n}]; Table[a[n], {n, 0, 30}] Table[(-1)^n 4^(-n) (2 n)! (2 n + 1)!! Sum[QBinomial[n, k, 1/4] 2^(-k (3 k + 1)/2)/(2 n + k + 1)! Sum[(-1)^ThueMorse[m] (2 m + 1)^(2 n + k + 1), {m, 0, 2^k - 1}], {k, 0, n}], {n, 0, 12}] (* Vladimir Reshetnikov, Jul 08 2018 *) CROSSREFS Cf. A272755, A272757, A287936, A287937. Sequence in context: A055415 A196541 A221296 * A225602 A195756 A125197 Adjacent sequences:  A287935 A287936 A287937 * A287939 A287940 A287941 KEYWORD nonn AUTHOR Juan Arias-de-Reyna, Jun 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 02:52 EDT 2019. Contains 325092 sequences. (Running on oeis4.)