The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287934 Composite numbers n such that E(n+1)+1 is divisible by n, where E(n) is the n-th Euler number (A122045). 0
 289, 341, 561, 1105, 1369, 1387, 1729, 2465, 2821, 4097, 5365, 6179, 6601, 8911, 9105, 9537, 10585, 12673, 14433, 14531, 15457, 15841, 28033, 29341, 33901, 41041, 41905, 42141, 46657, 48705, 52633, 52741, 62745, 63253, 63973, 75361, 80185, 82621, 99937 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Kummer proved in 1851 that E(2k + p - 1) == E(2k) (mod p) for k > 0 and all odd primes p. This sequence consists of composite numbers for which the congruence, with k=1, also holds. In terms of A000364, the sequence consists of composite odd numbers n that divide A000364((n + 1)/2) + (-1)^((n + 1)/2). REFERENCES Jozsef Sandor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 5, p. 556. LINKS Leonard Carlitz, Congruences for generalized Bell and Stirling numbers, Duke Mathematical Journal, Vol. 22, No. 2 (1955), pp. 193-205. Ernst Eduard Kummer, Über eine allgemeine Eigenschaft der rationalen Entwickelungscoefficienten einer bestimmten Gattung analytischer Functionen, Journal für die reine und angewandte Mathematik, Vol. 41 (1851), pp. 368-372. Samuel S. Wagstaff, Jr., Prime divisors of the Bernoulli and Euler numbers, Number Theory for the Millenium III (Urbana, IL, 2000), AK Peters, Natick, MA, 2002, pp. 357-374. MATHEMATICA a={}; For[n = 1, n < 100000, n++; If[!PrimeQ[n] && Divisible[EulerE[n + 1] + 1, n], a=AppendTo[a, n]]]; a Select[Range[100000], CompositeQ[#]&&Divisible[EulerE[#+1]+1, #]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 03 2019 *) PROG (PARI) e(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1); isok(n) = (((e(n+1)+1) % n) == 0); lista(nn) = forcomposite(n=1, nn, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Jun 10 2017 CROSSREFS Cf. A000364, A035163, A081730, A122045, A180942. Sequence in context: A235810 A229906 A008367 * A152852 A156572 A157990 Adjacent sequences:  A287931 A287932 A287933 * A287935 A287936 A287937 KEYWORD nonn AUTHOR Amiram Eldar, Jun 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 20:26 EDT 2021. Contains 343137 sequences. (Running on oeis4.)