login
A287932
a(n) = least k > n such that lpf(n) = lpf(k), where lpf = least prime factor (A020639).
2
4, 9, 6, 25, 8, 49, 10, 15, 12, 121, 14, 169, 16, 21, 18, 289, 20, 361, 22, 27, 24, 529, 26, 35, 28, 33, 30, 841, 32, 961, 34, 39, 36, 55, 38, 1369, 40, 45, 42, 1681, 44, 1849, 46, 51, 48, 2209, 50, 77, 52, 57, 54, 2809, 56, 65, 58, 63, 60, 3481, 62, 3721, 64
OFFSET
2,1
COMMENTS
This sequence is a permutation of the composite numbers (A002808).
a(p) = p^2 for any prime p (see A001248).
a(2*k) = 2*k + 2 for any k > 1.
For any prime p and n >= 0, a^n(p)/p is the (n+1)-th p-rough number (where a^n denotes the n-th iterate of a).
See also A071830 for the largest prime factor equivalent.
LINKS
MATHEMATICA
lpf[n_] := FactorInteger[n][[1, 1]]; a[n_] := Block[{k, p = lpf[n]}, k=n+p; While[lpf[k] != p, k += p]; k]; Array[a, 61, 2] (* Giovanni Resta, Jun 04 2017 *)
PROG
(PARI) a(n) = my (l=factor(n)[1, 1]); forstep (v=n+l, oo, l, if (factor(v)[1, 1]==l, return (v)))
CROSSREFS
A001248 is a subsequence.
Sequence in context: A362436 A140694 A152454 * A074767 A016097 A083717
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Jun 03 2017
STATUS
approved