login
A287922
a(n) = prime(1)^2 + prime(n)^2.
2
8, 13, 29, 53, 125, 173, 293, 365, 533, 845, 965, 1373, 1685, 1853, 2213, 2813, 3485, 3725, 4493, 5045, 5333, 6245, 6893, 7925, 9413, 10205, 10613, 11453, 11885, 12773, 16133, 17165, 18773, 19325, 22205, 22805, 24653, 26573, 27893, 29933, 32045, 32765, 36485
OFFSET
1,1
FORMULA
a(n) = 4 + prime(n)^2.
MATHEMATICA
Table[4+Prime[n]^2, {n, 43}]
Prime[Range[50]]^2+4 (* Harvey P. Dale, Feb 16 2020 *)
PROG
(Python)
from sympy import prime, primerange
def aupton(terms): return [4 + p*p for p in primerange(2, prime(terms)+1)]
print(aupton(43)) # Michael S. Branicky, Aug 13 2021
CROSSREFS
Sequence in context: A093023 A057097 A246639 * A321483 A096371 A354595
KEYWORD
nonn,easy
AUTHOR
XU Pingya, Jun 02 2017
STATUS
approved