login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287893 a(n) = floor(n*(n+2)/9). 1
0, 0, 0, 1, 2, 3, 5, 7, 8, 11, 13, 15, 18, 21, 24, 28, 32, 35, 40, 44, 48, 53, 58, 63, 69, 75, 80, 87, 93, 99, 106, 113, 120, 128, 136, 143, 152, 160, 168, 177, 186, 195, 205, 215, 224, 235, 245, 255, 266, 277, 288, 300, 312, 323, 336, 348, 360, 373, 386 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).

FORMULA

a(n) = (A005563(n) - A005563(n) mod 9)/9. Note that A005563(n) mod 9 has period 9: repeat [0, 3, 8, 6, 6, 8, 3, 0, 8].

Interleave A240438(n+1), A262523(n), A005563(n).

From Colin Barker, Jun 02 2017: (Start)

G.f.: x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)).

a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11) for n>10.

(End)

a(n) = floor(n*(n+2)/9). - Alois P. Heinz, Jun 02 2017

EXAMPLE

a(3) = (15-6)/9 = 1.

PROG

(PARI) concat(vector(3), Vec(x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^100))) \\ Colin Barker, Jun 02 2017

(PARI) a(n)=n*(n+2)\9 \\ Charles R Greathouse IV, Jun 06 2017

CROSSREFS

Cf. A005563, A240438, A262523, A262397, A262997.

Sequence in context: A242324 A099519 A014121 * A051600 A319239 A026410

Adjacent sequences:  A287890 A287891 A287892 * A287894 A287895 A287896

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Jun 02 2017

EXTENSIONS

Definition simplified by Alois P. Heinz, Jun 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 07:53 EDT 2019. Contains 322327 sequences. (Running on oeis4.)