Maximum number of transversals in a diagonal Latin square of order n, https://oeis.org/A287644 n=1, a(1)=1 Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf Way of finding: brute force 0 n=2, a(2)=0 - n=3, a(3)=0 - n=4, a(4)=8 Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf Way of finding: brute force 0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1 n=5, a(5)=15 Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf Way of finding: brute force 0 1 2 3 4 4 2 3 0 1 3 4 1 2 0 1 3 0 4 2 2 0 4 1 3 n=6, a(6)=32 Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf Way of finding: brute force 0 1 2 3 4 5 4 2 5 0 3 1 3 5 1 2 0 4 5 3 0 4 1 2 2 4 3 1 5 0 1 0 4 5 2 3 n=7, a(7)=133 Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf Way of finding: brute force 0 1 2 3 4 5 6 4 2 6 0 5 1 3 3 5 1 6 0 4 2 5 6 3 4 1 2 0 6 4 5 2 3 0 1 1 3 0 5 2 6 4 2 0 4 1 6 3 5 n=8, a(8)=384 Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf Way of finding: brute force 0 1 2 3 4 5 6 7 1 2 3 0 6 7 5 4 6 5 7 4 1 3 2 0 5 3 4 1 2 0 7 6 2 7 0 6 5 4 3 1 3 4 1 5 7 6 0 2 7 0 6 2 3 1 4 5 4 6 5 7 0 2 1 3 n=9, a(9)=2241 Announcement: https://vk.com/wall162891802_1347, Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Sep 17 2020 Way of finding: brute force using X-based fillings 0 1 2 3 4 5 6 7 8 7 8 4 0 6 1 2 3 5 4 3 1 2 8 7 5 6 0 1 6 7 5 3 4 0 8 2 5 4 0 8 7 2 3 1 6 8 2 3 1 0 6 7 5 4 3 5 6 7 2 8 4 0 1 6 0 8 4 5 3 1 2 7 2 7 5 6 1 0 8 4 3 n=10, a(10)>=5504 Article: J. W. Brown et al., Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, volume 139 (1992), pp. 43-49. Way of finding: ? 0 8 5 1 7 3 4 6 9 2 5 1 7 2 9 8 0 3 4 6 1 7 2 9 5 6 8 0 3 4 9 6 4 3 0 2 7 1 5 8 3 0 8 6 4 1 5 9 2 7 4 3 0 8 6 5 9 2 7 1 7 2 9 5 1 4 6 8 0 3 6 4 3 0 8 9 2 7 1 5 2 9 6 4 3 7 1 5 8 0 8 5 1 7 2 0 3 4 6 9 n=11, a(11)>=37851 Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001) Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals) 0 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 0 1 4 5 6 7 8 9 10 0 1 2 3 6 7 8 9 10 0 1 2 3 4 5 8 9 10 0 1 2 3 4 5 6 7 10 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 0 3 4 5 6 7 8 9 10 0 1 2 5 6 7 8 9 10 0 1 2 3 4 7 8 9 10 0 1 2 3 4 5 6 9 10 0 1 2 3 4 5 6 7 8 n=12, a(12)>=198144 Announcement: https://vk.com/wall162891802_1603, Eduard I. Vatutin, Mar 25 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/) Way of finding: composite squares method + diagonalizing/rotating subsquares 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 0 11 6 7 8 9 10 9 8 7 6 11 10 1 0 5 4 3 2 4 5 0 1 2 3 8 9 10 11 6 7 6 11 10 9 8 7 4 3 2 1 0 5 11 10 9 8 7 6 5 4 3 2 1 0 3 4 5 0 1 2 9 10 11 6 7 8 2 3 4 5 0 1 10 11 6 7 8 9 10 9 8 7 6 11 0 5 4 3 2 1 5 0 1 2 3 4 7 8 9 10 11 6 7 6 11 10 9 8 3 2 1 0 5 4 8 7 6 11 10 9 2 1 0 5 4 3 n=13, a(13)>=1030367 Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001) Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals) 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 4 5 6 7 8 9 10 11 12 0 1 2 3 6 7 8 9 10 11 12 0 1 2 3 4 5 8 9 10 11 12 0 1 2 3 4 5 6 7 10 11 12 0 1 2 3 4 5 6 7 8 9 12 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 0 3 4 5 6 7 8 9 10 11 12 0 1 2 5 6 7 8 9 10 11 12 0 1 2 3 4 7 8 9 10 11 12 0 1 2 3 4 5 6 9 10 11 12 0 1 2 3 4 5 6 7 8 11 12 0 1 2 3 4 5 6 7 8 9 10 n=14, a(14)>=3477504 Announcement: https://vk.com/wall162891802_1914, Eduard I. Vatutin, Jan 27 2022 Way of finding: expanding spectrum of diagonal transversals using intercalate rotation neighborhoods 0 1 2 3 9 5 7 6 8 4 10 11 12 13 13 12 11 10 4 8 6 7 5 9 3 2 1 0 10 2 5 6 12 13 9 4 0 1 7 8 11 3 1 3 6 11 0 9 8 5 4 13 2 7 10 12 9 0 3 1 8 6 11 2 7 5 12 10 13 4 5 9 12 0 6 2 3 10 11 7 13 1 4 8 11 7 9 8 3 1 13 0 12 10 5 4 6 2 3 11 8 7 1 0 4 9 13 12 6 5 2 10 7 8 0 4 11 3 12 1 10 2 9 13 5 6 8 4 1 13 7 11 10 3 2 6 0 12 9 5 6 5 13 9 2 10 1 12 3 11 4 0 8 7 4 13 10 12 5 7 2 11 6 8 1 3 0 9 2 6 4 5 10 12 0 13 1 3 8 9 7 11 12 10 7 2 13 4 5 8 9 0 11 6 3 1 n=15, a(15)>=36362925 Announcement: https://vk.com/wall162891802_1905, Eduard I. Vatutin, Jan 23 2022 Way of finding: diagonalizing of cyclic LS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 0 4 5 3 7 13 9 14 11 12 10 6 8 10 11 12 13 6 7 1 2 4 5 9 14 8 0 3 13 6 7 14 8 9 4 5 12 10 0 1 2 3 11 5 3 4 10 11 12 14 8 1 2 7 13 6 9 0 12 10 11 7 13 6 0 1 3 4 8 9 14 2 5 3 4 5 11 12 10 8 9 2 0 13 6 7 14 1 6 7 13 8 9 14 5 3 10 11 1 2 0 4 12 14 8 9 1 2 0 12 10 7 13 3 4 5 11 6 4 5 3 12 10 11 9 14 0 1 6 7 13 8 2 8 9 14 2 0 1 10 11 13 6 4 5 3 12 7 2 0 1 5 3 4 13 6 14 8 12 10 11 7 9 11 12 10 6 7 13 2 0 5 3 14 8 9 1 4 7 13 6 9 14 8 3 4 11 12 2 0 1 5 10 9 14 8 0 1 2 11 12 6 7 5 3 4 10 13 a(16)>=244744192 Announcement 1 (value withoud proving DLS): https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2731, Natalia Makarova, Jul 30 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/) Announcement 2 (value and DLS): https://vk.com/wall162891802_1900, Eduard I. Vatutin, Jan 22 2022 Way of finding: composite squares method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 0 1 5 4 7 6 9 8 11 10 14 15 12 13 3 2 1 0 6 7 4 5 10 11 8 9 15 14 13 12 1 0 3 2 7 6 5 4 11 10 9 8 13 12 15 14 8 11 9 10 14 12 13 15 0 2 3 1 5 6 4 7 10 9 11 8 13 15 14 12 3 1 0 2 7 4 6 5 11 8 10 9 15 13 12 14 1 3 2 0 6 5 7 4 9 10 8 11 12 14 15 13 2 0 1 3 4 7 5 6 14 15 12 13 8 9 10 11 4 5 6 7 2 3 0 1 13 12 15 14 10 11 8 9 6 7 4 5 1 0 3 2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 9 8 11 10 5 4 7 6 0 1 2 3 6 5 7 4 3 1 0 2 13 15 14 12 11 8 10 9 7 4 6 5 1 3 2 0 15 13 12 14 10 9 11 8 4 7 5 6 0 2 3 1 14 12 13 15 9 10 8 11 5 6 4 7 2 0 1 3 12 14 15 13 8 11 9 10 n=17, a(17)>=1606008513 Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001) Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n=18, a(18)>=2167746304? Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2876, Natalia Makarova, before Aug 26 2021 Way of finding: ? ? n=19, a(19)>=87656896891 Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001) Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n=20, a(20)>=697292390400 Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2875, Natalia Makarova, Aug 26 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/) Way of finding: composite squares method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 0 1 7 8 9 5 6 12 13 14 10 11 17 18 19 15 16 4 0 1 2 3 9 5 6 7 8 14 10 11 12 13 19 15 16 17 18 1 2 3 4 0 6 7 8 9 5 11 12 13 14 10 16 17 18 19 15 3 4 0 1 2 8 9 5 6 7 13 14 10 11 12 18 19 15 16 17 15 16 17 18 19 10 11 12 13 14 5 6 7 8 9 0 1 2 3 4 17 18 19 15 16 12 13 14 10 11 7 8 9 5 6 2 3 4 0 1 19 15 16 17 18 14 10 11 12 13 9 5 6 7 8 4 0 1 2 3 16 17 18 19 15 11 12 13 14 10 6 7 8 9 5 1 2 3 4 0 18 19 15 16 17 13 14 10 11 12 8 9 5 6 7 3 4 0 1 2 5 6 7 8 9 0 1 2 3 4 15 16 17 18 19 10 11 12 13 14 7 8 9 5 6 2 3 4 0 1 17 18 19 15 16 12 13 14 10 11 9 5 6 7 8 4 0 1 2 3 19 15 16 17 18 14 10 11 12 13 6 7 8 9 5 1 2 3 4 0 16 17 18 19 15 11 12 13 14 10 8 9 5 6 7 3 4 0 1 2 18 19 15 16 17 13 14 10 11 12 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 12 13 14 10 11 17 18 19 15 16 2 3 4 0 1 7 8 9 5 6 14 10 11 12 13 19 15 16 17 18 4 0 1 2 3 9 5 6 7 8 11 12 13 14 10 16 17 18 19 15 1 2 3 4 0 6 7 8 9 5 13 14 10 11 12 18 19 15 16 17 3 4 0 1 2 8 9 5 6 7 n=21, a(21)>=51162162017? Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2892, Natalia Makarova, Aug 29 2021 Way of finding: ? 0 12 3 2 17 19 20 18 13 15 16 14 1 8 10 11 9 4 6 7 5 2 1 0 12 20 18 17 19 16 14 13 15 3 11 9 8 10 7 5 4 6 12 3 2 1 18 20 19 17 14 16 15 13 0 9 11 10 8 5 7 6 4 1 0 12 3 19 17 18 20 15 13 14 16 2 10 8 9 11 6 4 5 7 8 10 11 9 4 12 7 6 0 2 3 1 5 17 19 20 18 13 15 16 14 11 9 8 10 6 5 4 12 3 1 0 2 7 20 18 17 19 16 14 13 15 9 11 10 8 12 7 6 5 1 3 2 0 4 18 20 19 17 14 16 15 13 10 8 9 11 5 4 12 7 2 0 1 3 6 19 17 18 20 15 13 14 16 17 19 20 18 13 15 16 14 8 12 11 10 9 4 6 7 5 0 2 3 1 20 18 17 19 16 14 13 15 10 9 8 12 11 7 5 4 6 3 1 0 2 18 20 19 17 14 16 15 13 12 11 10 9 8 5 7 6 4 1 3 2 0 19 17 18 20 15 13 14 16 9 8 12 11 10 6 4 5 7 2 0 1 3 3 2 1 0 7 6 5 4 11 10 9 8 12 16 15 14 13 20 19 18 17 4 6 7 5 0 2 3 1 17 19 20 18 14 13 12 16 15 8 10 11 9 7 5 4 6 3 1 0 2 20 18 17 19 16 15 14 13 12 11 9 8 10 5 7 6 4 1 3 2 0 18 20 19 17 13 12 16 15 14 9 11 10 8 6 4 5 7 2 0 1 3 19 17 18 20 15 14 13 12 16 10 8 9 11 13 15 16 14 8 10 11 9 4 6 7 5 18 0 2 3 1 17 12 20 19 16 14 13 15 11 9 8 10 7 5 4 6 20 3 1 0 2 19 18 17 12 14 16 15 13 9 11 10 8 5 7 6 4 17 1 3 2 0 12 20 19 18 15 13 14 16 10 8 9 11 6 4 5 7 19 2 0 1 3 18 17 12 20 n=22 ? n=23, a(23)>=452794797220965 Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001) Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 n=24 ? n=25, a(25)>=41609568918940625 Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001) Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Jan 27 2022