Maximum number of transversals in a diagonal Latin square of order n, https://oeis.org/A287644

n=1, a(1)=1
Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf
Way of finding: brute force
0

n=2, a(2)=0
-

n=3, a(3)=0
-

n=4, a(4)=8
Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf
Way of finding: brute force
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

n=5, a(5)=15
Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf
Way of finding: brute force
0 1 2 3 4
4 2 3 0 1
3 4 1 2 0
1 3 0 4 2
2 0 4 1 3

n=6, a(6)=32
Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf
Way of finding: brute force
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3

n=7, a(7)=133
Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf
Way of finding: brute force
0 1 2 3 4 5 6
4 2 6 0 5 1 3
3 5 1 6 0 4 2
5 6 3 4 1 2 0
6 4 5 2 3 0 1
1 3 0 5 2 6 4
2 0 4 1 6 3 5

n=8, a(8)=384
Article: E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0. http://ceur-ws.org/Vol-1973/paper01.pdf
Way of finding: brute force
0 1 2 3 4 5 6 7
1 2 3 0 6 7 5 4
6 5 7 4 1 3 2 0
5 3 4 1 2 0 7 6
2 7 0 6 5 4 3 1
3 4 1 5 7 6 0 2
7 0 6 2 3 1 4 5
4 6 5 7 0 2 1 3

n=9, a(9)=2241
Announcement: https://vk.com/wall162891802_1347, Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Sep 17 2020
Way of finding: brute force using X-based fillings
0 1 2 3 4 5 6 7 8
7 8 4 0 6 1 2 3 5
4 3 1 2 8 7 5 6 0
1 6 7 5 3 4 0 8 2
5 4 0 8 7 2 3 1 6
8 2 3 1 0 6 7 5 4
3 5 6 7 2 8 4 0 1
6 0 8 4 5 3 1 2 7
2 7 5 6 1 0 8 4 3

n=10, a(10)>=5504
Article: J. W. Brown et al., Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, volume 139 (1992), pp. 43-49.
Way of finding: ?
0 8 5 1 7 3 4 6 9 2 
5 1 7 2 9 8 0 3 4 6 
1 7 2 9 5 6 8 0 3 4 
9 6 4 3 0 2 7 1 5 8 
3 0 8 6 4 1 5 9 2 7 
4 3 0 8 6 5 9 2 7 1 
7 2 9 5 1 4 6 8 0 3 
6 4 3 0 8 9 2 7 1 5 
2 9 6 4 3 7 1 5 8 0 
8 5 1 7 2 0 3 4 6 9 

n=11, a(11)>=37851
Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001)
Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals)
0 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 0 1
4 5 6 7 8 9 10 0 1 2 3
6 7 8 9 10 0 1 2 3 4 5
8 9 10 0 1 2 3 4 5 6 7
10 0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 0
3 4 5 6 7 8 9 10 0 1 2
5 6 7 8 9 10 0 1 2 3 4
7 8 9 10 0 1 2 3 4 5 6
9 10 0 1 2 3 4 5 6 7 8

n=12, a(12)>=198144
Announcement: https://vk.com/wall162891802_1603, Eduard I. Vatutin, Mar 25 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/)
Way of finding: composite squares method + diagonalizing/rotating subsquares
0 1 2 3 4 5 6 7 8 9 10 11 
1 2 3 4 5 0 11 6 7 8 9 10 
9 8 7 6 11 10 1 0 5 4 3 2 
4 5 0 1 2 3 8 9 10 11 6 7 
6 11 10 9 8 7 4 3 2 1 0 5 
11 10 9 8 7 6 5 4 3 2 1 0 
3 4 5 0 1 2 9 10 11 6 7 8 
2 3 4 5 0 1 10 11 6 7 8 9 
10 9 8 7 6 11 0 5 4 3 2 1 
5 0 1 2 3 4 7 8 9 10 11 6 
7 6 11 10 9 8 3 2 1 0 5 4 
8 7 6 11 10 9 2 1 0 5 4 3 

n=13, a(13)>=1030367
Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001)
Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals)
0 1 2 3 4 5 6 7 8 9 10 11 12 
2 3 4 5 6 7 8 9 10 11 12 0 1 
4 5 6 7 8 9 10 11 12 0 1 2 3 
6 7 8 9 10 11 12 0 1 2 3 4 5 
8 9 10 11 12 0 1 2 3 4 5 6 7 
10 11 12 0 1 2 3 4 5 6 7 8 9 
12 0 1 2 3 4 5 6 7 8 9 10 11 
1 2 3 4 5 6 7 8 9 10 11 12 0 
3 4 5 6 7 8 9 10 11 12 0 1 2 
5 6 7 8 9 10 11 12 0 1 2 3 4 
7 8 9 10 11 12 0 1 2 3 4 5 6 
9 10 11 12 0 1 2 3 4 5 6 7 8 
11 12 0 1 2 3 4 5 6 7 8 9 10 

n=14, a(14)>=3477504
Announcement: https://vk.com/wall162891802_1914, Eduard I. Vatutin, Jan 27 2022
Way of finding: expanding spectrum of diagonal transversals using intercalate rotation neighborhoods
0 1 2 3 9 5 7 6 8 4 10 11 12 13
13 12 11 10 4 8 6 7 5 9 3 2 1 0
10 2 5 6 12 13 9 4 0 1 7 8 11 3
1 3 6 11 0 9 8 5 4 13 2 7 10 12
9 0 3 1 8 6 11 2 7 5 12 10 13 4
5 9 12 0 6 2 3 10 11 7 13 1 4 8
11 7 9 8 3 1 13 0 12 10 5 4 6 2
3 11 8 7 1 0 4 9 13 12 6 5 2 10
7 8 0 4 11 3 12 1 10 2 9 13 5 6
8 4 1 13 7 11 10 3 2 6 0 12 9 5
6 5 13 9 2 10 1 12 3 11 4 0 8 7
4 13 10 12 5 7 2 11 6 8 1 3 0 9
2 6 4 5 10 12 0 13 1 3 8 9 7 11
12 10 7 2 13 4 5 8 9 0 11 6 3 1

n=15, a(15)>=36362925
Announcement: https://vk.com/wall162891802_1905, Eduard I. Vatutin, Jan 23 2022
Way of finding: diagonalizing of cyclic LS
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 4 5 3 7 13 9 14 11 12 10 6 8
10 11 12 13 6 7 1 2 4 5 9 14 8 0 3
13 6 7 14 8 9 4 5 12 10 0 1 2 3 11
5 3 4 10 11 12 14 8 1 2 7 13 6 9 0
12 10 11 7 13 6 0 1 3 4 8 9 14 2 5
3 4 5 11 12 10 8 9 2 0 13 6 7 14 1
6 7 13 8 9 14 5 3 10 11 1 2 0 4 12
14 8 9 1 2 0 12 10 7 13 3 4 5 11 6
4 5 3 12 10 11 9 14 0 1 6 7 13 8 2
8 9 14 2 0 1 10 11 13 6 4 5 3 12 7
2 0 1 5 3 4 13 6 14 8 12 10 11 7 9
11 12 10 6 7 13 2 0 5 3 14 8 9 1 4
7 13 6 9 14 8 3 4 11 12 2 0 1 5 10
9 14 8 0 1 2 11 12 6 7 5 3 4 10 13

a(16)>=244744192
Announcement 1 (value withoud proving DLS): https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2731, Natalia Makarova, Jul 30 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/)
Announcement 2 (value and DLS): https://vk.com/wall162891802_1900, Eduard I. Vatutin, Jan 22 2022
Way of finding: composite squares method
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 0 1 5 4 7 6 9 8 11 10 14 15 12 13
3 2 1 0 6 7 4 5 10 11 8 9 15 14 13 12
1 0 3 2 7 6 5 4 11 10 9 8 13 12 15 14
8 11 9 10 14 12 13 15 0 2 3 1 5 6 4 7
10 9 11 8 13 15 14 12 3 1 0 2 7 4 6 5
11 8 10 9 15 13 12 14 1 3 2 0 6 5 7 4
9 10 8 11 12 14 15 13 2 0 1 3 4 7 5 6
14 15 12 13 8 9 10 11 4 5 6 7 2 3 0 1
13 12 15 14 10 11 8 9 6 7 4 5 1 0 3 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
12 13 14 15 9 8 11 10 5 4 7 6 0 1 2 3
6 5 7 4 3 1 0 2 13 15 14 12 11 8 10 9
7 4 6 5 1 3 2 0 15 13 12 14 10 9 11 8
4 7 5 6 0 2 3 1 14 12 13 15 9 10 8 11
5 6 4 7 2 0 1 3 12 14 15 13 8 11 9 10

n=17, a(17)>=1606008513
Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001)
Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5
8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9
12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6
9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8
11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10
13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12
15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n=18, a(18)>=2167746304?
Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2876, Natalia Makarova, before Aug 26 2021
Way of finding: ?
?

n=19, a(19)>=87656896891
Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001)
Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3
6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5
8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9
12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11
14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13
16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2
5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4
7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6
9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10
13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12
15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n=20, a(20)>=697292390400
Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2875, Natalia Makarova, Aug 26 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/)
Way of finding: composite squares method
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 3 4 0 1 7 8 9 5 6 12 13 14 10 11 17 18 19 15 16
4 0 1 2 3 9 5 6 7 8 14 10 11 12 13 19 15 16 17 18
1 2 3 4 0 6 7 8 9 5 11 12 13 14 10 16 17 18 19 15
3 4 0 1 2 8 9 5 6 7 13 14 10 11 12 18 19 15 16 17
15 16 17 18 19 10 11 12 13 14 5 6 7 8 9 0 1 2 3 4
17 18 19 15 16 12 13 14 10 11 7 8 9 5 6 2 3 4 0 1
19 15 16 17 18 14 10 11 12 13 9 5 6 7 8 4 0 1 2 3
16 17 18 19 15 11 12 13 14 10 6 7 8 9 5 1 2 3 4 0
18 19 15 16 17 13 14 10 11 12 8 9 5 6 7 3 4 0 1 2
5 6 7 8 9 0 1 2 3 4 15 16 17 18 19 10 11 12 13 14
7 8 9 5 6 2 3 4 0 1 17 18 19 15 16 12 13 14 10 11
9 5 6 7 8 4 0 1 2 3 19 15 16 17 18 14 10 11 12 13
6 7 8 9 5 1 2 3 4 0 16 17 18 19 15 11 12 13 14 10
8 9 5 6 7 3 4 0 1 2 18 19 15 16 17 13 14 10 11 12
10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9
12 13 14 10 11 17 18 19 15 16 2 3 4 0 1 7 8 9 5 6
14 10 11 12 13 19 15 16 17 18 4 0 1 2 3 9 5 6 7 8
11 12 13 14 10 16 17 18 19 15 1 2 3 4 0 6 7 8 9 5
13 14 10 11 12 18 19 15 16 17 3 4 0 1 2 8 9 5 6 7 

n=21, a(21)>=51162162017?
Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2892, Natalia Makarova, Aug 29 2021
Way of finding: ?
0 12 3 2 17 19 20 18 13 15 16 14 1 8 10 11 9 4 6 7 5
2 1 0 12 20 18 17 19 16 14 13 15 3 11 9 8 10 7 5 4 6
12 3 2 1 18 20 19 17 14 16 15 13 0 9 11 10 8 5 7 6 4
1 0 12 3 19 17 18 20 15 13 14 16 2 10 8 9 11 6 4 5 7
8 10 11 9 4 12 7 6 0 2 3 1 5 17 19 20 18 13 15 16 14
11 9 8 10 6 5 4 12 3 1 0 2 7 20 18 17 19 16 14 13 15
9 11 10 8 12 7 6 5 1 3 2 0 4 18 20 19 17 14 16 15 13
10 8 9 11 5 4 12 7 2 0 1 3 6 19 17 18 20 15 13 14 16
17 19 20 18 13 15 16 14 8 12 11 10 9 4 6 7 5 0 2 3 1
20 18 17 19 16 14 13 15 10 9 8 12 11 7 5 4 6 3 1 0 2
18 20 19 17 14 16 15 13 12 11 10 9 8 5 7 6 4 1 3 2 0
19 17 18 20 15 13 14 16 9 8 12 11 10 6 4 5 7 2 0 1 3
3 2 1 0 7 6 5 4 11 10 9 8 12 16 15 14 13 20 19 18 17
4 6 7 5 0 2 3 1 17 19 20 18 14 13 12 16 15 8 10 11 9
7 5 4 6 3 1 0 2 20 18 17 19 16 15 14 13 12 11 9 8 10
5 7 6 4 1 3 2 0 18 20 19 17 13 12 16 15 14 9 11 10 8
6 4 5 7 2 0 1 3 19 17 18 20 15 14 13 12 16 10 8 9 11
13 15 16 14 8 10 11 9 4 6 7 5 18 0 2 3 1 17 12 20 19
16 14 13 15 11 9 8 10 7 5 4 6 20 3 1 0 2 19 18 17 12
14 16 15 13 9 11 10 8 5 7 6 4 17 1 3 2 0 12 20 19 18
15 13 14 16 10 8 9 11 6 4 5 7 19 2 0 1 3 18 17 12 20

n=22 ?

n=23, a(23)>=452794797220965
Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001)
Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9
12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11
14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13
16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6
9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10
13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12
15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n=24 ?

n=25, a(25)>=41609568918940625
Announcement: https://vk.com/wall162891802_1407, Eduard I. Vatutin, Oct 24 2020 (was known before, see https://oeis.org/A006717, Ian Wanless, Oct 07 2001)
Way of finding: one of cyclic diagonal Latin squares (all of them have same number of transversals)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9
12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11
14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13
16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10
13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12
15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Jan 27 2022