login
A287473
Triangular numbers k such that phi(k) is a square number, where phi(k) is the Euler totient function (A000010).
2
1, 10, 136, 630, 2016, 7875, 9180, 18915, 32896, 37128, 46056, 58311, 66430, 103740, 131841, 198135, 225456, 301476, 323610, 332520, 408156, 499500, 738720, 786885, 839160, 862641, 922761, 924120, 1065070, 1079715, 1183491, 1385280, 1851850, 1906128, 1925703
OFFSET
1,2
COMMENTS
The indices of these triangular numbers are: 1, 4, 16, 35, 63, 125, 135, 194, 256, 272, 303, 341, 364, 455, 513, 629, 671, 776, 804, 815, 903, 999, 1215, 1254, 1295, 1313, 1358, 1359, 1459, 1469, 1538, 1664, 1924, 1952, 1962, ... and their phi values are the squares of: 1, 2, 8, 12, 24, 60, 48, 96, 128, 96, 120, 180, 144, 144, 288, 288, 240, 288, 264, 288, 336, 360, 432, 600, 432, 720, 720, 480, 648, 672, 864, 576, 720, 720, 1080, ...
Similar to A115910, since A115910(n)^2 are squares whose phi is a triangular number.
LINKS
EXAMPLE
136=16*17/2 is triangular, phi(136)=64=8^2 is a square, thus 136 is in the sequence.
MATHEMATICA
Select[Accumulate[Range[1000]], IntegerQ[Sqrt[EulerPhi[#]]]&]
PROG
(PARI) isok(n) = ispolygonal(n, 3) && issquare(eulerphi(n)); \\ Michel Marcus, May 25 2017
CROSSREFS
Intersection of A000217 and A039770.
Sequence in context: A024135 A050408 A133197 * A240917 A240654 A128862
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 25 2017
STATUS
approved