login
A287416
Number T(n,k) of set partitions of [n] such that the maximal value of all absolute differences between least elements of consecutive blocks and between consecutive elements within the blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
5
1, 1, 0, 2, 0, 3, 2, 0, 4, 8, 3, 0, 5, 22, 19, 6, 0, 6, 52, 81, 48, 16, 0, 7, 114, 289, 267, 147, 53, 0, 8, 240, 941, 1250, 968, 529, 204, 0, 9, 494, 2894, 5310, 5469, 3919, 2174, 878, 0, 10, 1004, 8601, 21256, 28083, 25326, 17593, 9961, 4141
OFFSET
0,4
COMMENTS
The maximal value is assumed to be zero if there are no consecutive blocks and no consecutive elements.
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k <= max(n-1,0). T(n,k) = 0 if k>=n and k>0.
LINKS
FORMULA
T(n,k) = A287417(n,k) - A287417(n,k-1) for k>0, T(n,0) = 1.
T(n+2,n+1) = 1 + A000110(n).
EXAMPLE
T(4,1) = 4: 1234, 1|234, 1|2|34, 1|2|3|4.
T(4,2) = 8: 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 1|23|4, 1|24|3.
T(4,3) = 3: 123|4, 14|23, 14|2|3.
T(5,3) = 19: 1235|4, 123|45, 123|4|5, 125|34, 125|3|4, 134|25, 134|2|5, 13|24|5, 13|25|4, 145|23, 14|235, 14|23|5, 1|234|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 1|25|34, 1|25|3|4.
Triangle T(n,k) begins:
1;
1;
0, 2;
0, 3, 2;
0, 4, 8, 3;
0, 5, 22, 19, 6;
0, 6, 52, 81, 48, 16;
0, 7, 114, 289, 267, 147, 53;
0, 8, 240, 941, 1250, 968, 529, 204;
...
MAPLE
b:= proc(n, k, l, t) option remember; `if`(n<1, 1, `if`(t-n>k, 0,
b(n-1, k, map(x-> `if`(x-n>=k, [][], x), [l[], n]), n)) +add(
b(n-1, k, sort(map(x-> `if`(x-n>=k, [][], x), subsop(j=n, l))),
`if`(t-n>k, infinity, t)), j=1..nops(l)))
end:
A:= (n, k)-> b(n, min(k, n-1), [], n):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
MATHEMATICA
b[n_, k_, l_, t_] := b[n, k, l, t] = If[n < 1, 1, If[t - n > k, 0, b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n], n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]], If[t - n > k, Infinity, t]], {j, 1, Length[l]}]];
A[n_, k_] := b[n, Min[k, n - 1], {}, n];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, { k, 0, Max[n - 1, 0]}] // Flatten (* Jean-François Alcover, May 24 2018, translated from Maple *)
CROSSREFS
Columns k=1-2 give: A001477 (for n>1), A005803 (for n>0).
Row sums give A000110.
Sequence in context: A342239 A269133 A143324 * A097418 A362789 A154752
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 24 2017
STATUS
approved