The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287360 0-limiting word of the morphism 0->11, 1->21, 2->0. 6
 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Starting with 0, the first 5 iterations of the morphism yield words shown here: 1st:  11 2nd:  2121 3rd:  021021 4th:  1102111021 5th:  212111021212111021 The 0-limiting word is the limit of the words for which the number of iterations congruent to 0 mod 3. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where U = 5.5707505637226408833903376944272134..., V = 1.9375648970813894129869852971548390..., W = 3.2853752818613204416951688472136067... If n >=2, then u(n) - u(n-1) is in {3,5,9}, v(n) - v(n-1) is in {1,2,3}, and w(n) - w(n-1) is in {2,3,5}. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 EXAMPLE 3rd iterate: 021021 6th iterate: 021021212111021021021212111021 MATHEMATICA s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {2, 1}, 2 -> 0}] &, {0}, 12] (* A287360 *) Flatten[Position[s, 0]] (* A287361 *) Flatten[Position[s, 1]] (* A287362 *) Flatten[Position[s, 2]] (* A287363 *) CROSSREFS Cf. A287361, A287362, A287363, A287364 (1-limiting word);, A287368 (2-limiting word). Sequence in context: A190427 A287108 A333948 * A035443 A180430 A246369 Adjacent sequences:  A287357 A287358 A287359 * A287361 A287362 A287363 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 19:57 EDT 2020. Contains 336279 sequences. (Running on oeis4.)