login
A287215
Number T(n,k) of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
18
1, 1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 21, 7, 1, 1, 65, 86, 39, 11, 1, 1, 209, 361, 209, 77, 19, 1, 1, 732, 1584, 1123, 493, 171, 35, 1, 1, 2780, 7315, 6153, 3124, 1293, 413, 67, 1, 1, 11377, 35635, 34723, 20019, 9320, 3709, 1059, 131, 1, 1, 49863, 183080, 202852, 130916, 66992, 30396, 11373, 2837, 259, 1
OFFSET
0,6
COMMENTS
The maximal absolute difference is assumed to be zero if there are fewer than two blocks.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k>=n and k>0.
LINKS
FORMULA
T(n,k) = A287216(n,k) - A287216(n,k-1) for k>0, T(n,0) = 1.
EXAMPLE
T(4,0) = 1: 1234.
T(4,1) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
T(4,3) = 1: 123|4.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1;
1, 8, 5, 1;
1, 22, 21, 7, 1;
1, 65, 86, 39, 11, 1;
1, 209, 361, 209, 77, 19, 1;
1, 732, 1584, 1123, 493, 171, 35, 1;
MAPLE
b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
`if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
end:
A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
MATHEMATICA
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];
A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, {k, 0, Max[n - 1, 0]}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
CROSSREFS
Row sums give A000110.
T(2n,n) gives A322884.
Sequence in context: A098747 A122897 A117425 * A168216 A091698 A134380
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 21 2017
STATUS
approved