login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287215 Number T(n,k) of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows. 18
1, 1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 21, 7, 1, 1, 65, 86, 39, 11, 1, 1, 209, 361, 209, 77, 19, 1, 1, 732, 1584, 1123, 493, 171, 35, 1, 1, 2780, 7315, 6153, 3124, 1293, 413, 67, 1, 1, 11377, 35635, 34723, 20019, 9320, 3709, 1059, 131, 1, 1, 49863, 183080, 202852, 130916, 66992, 30396, 11373, 2837, 259, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The maximal absolute difference is assumed to be zero if there are fewer than two blocks.

T(n,k) is defined for all n,k >= 0.  The triangle contains only the positive terms. T(n,k) = 0 if k>=n and k>0.

LINKS

Alois P. Heinz, Rows n = 0..141, flattened

Wikipedia, Partition of a set

FORMULA

T(n,k) = A287216(n,k) - A287216(n,k-1) for k>0, T(n,0) = 1.

EXAMPLE

T(4,0) = 1: 1234.

T(4,1) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.

T(4,2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.

T(4,3) = 1: 123|4.

Triangle T(n,k) begins:

  1;

  1;

  1,   1;

  1,   3,    1;

  1,   8,    5,    1;

  1,  22,   21,    7,   1;

  1,  65,   86,   39,  11,   1;

  1, 209,  361,  209,  77,  19,  1;

  1, 732, 1584, 1123, 493, 171, 35, 1;

MAPLE

b:= proc(n, k, m, l) option remember; `if`(n<1, 1,

     `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))

    end:

A:= (n, k)-> b(n-1, min(k, n-1), 1, n):

T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):

seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);

MATHEMATICA

b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];

A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];

T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];

Table[T[n, k], {n, 0, 12}, {k, 0, Max[n - 1, 0]}] // Flatten (* Jean-Fran├žois Alcover, May 19 2018, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000012, A003101(n-1), A322875, A322876, A322877, A322878, A322879, A322880, A322881, A322882, A322883.

Row sums give A000110.

T(2n,n) gives A322884.

Cf. A287213, A287216, A287416, A287640.

Sequence in context: A098747 A122897 A117425 * A168216 A091698 A134380

Adjacent sequences:  A287212 A287213 A287214 * A287216 A287217 A287218

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 07:51 EDT 2019. Contains 322381 sequences. (Running on oeis4.)