login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287174 2-limiting word of the morphism 0->10, 1->20, 2->0. 6
2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Starting with 0, the first 5 iterations of the morphism yield words shown here:

1st:  10

2nd:  2010

3rd:  0102010

4th:  1020100102010

5th:  201001020101020100102010

The 2-limiting word is the limit of the words for which the number of iterations is congruent to 2 mod 3.

Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where

U = 1.8392867552141611325518525646532866...,

V = U^2 = 3.3829757679062374941227085364...,

W = U^3 = 6.2222625231203986266745611011....

If n >=2, then u(n) - u(n-1) is in {1,2}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,6,7}.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

EXAMPLE

2nd iterate: 2010

5th iterate: 201001020101020100102010

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 11] (* A287174 *)

Flatten[Position[s, 0]] (* A287175 *)

Flatten[Position[s, 1]] (* A287176 *)

Flatten[Position[s, 2]] (* A287177 *)

CROSSREFS

Cf. A286998, A287111, A287175, A287176, A287177.

Sequence in context: A284500 A281458 A178781 * A080843 A287112 A296238

Adjacent sequences:  A287171 A287172 A287173 * A287175 A287176 A287177

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 17:49 EDT 2019. Contains 324329 sequences. (Running on oeis4.)