login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287112 1-limiting word of the morphism 0->10, 1->20, 2->0. 5
1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Starting with 0, the first 4 iterations of the morphism yield words shown here:

1st:  10

2nd:  2010

3rd:  0102010

4th:  1020100102010

The 1-limiting word is the limit of the words for which the number of iterations is congruent to 1 mod 3.

Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where

U = 1.8392867552141611325518525646532866...,

V = U^2 = 3.3829757679062374941227085364...,

W = U^3 = 6.2222625231203986266745611011....

If n >=2, then u(n) - u(n-1) is in {1,2}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,6,7}.

From Michel Dekking, Mar 29 2019: (Start)

This sequence is one of the three fixed points of the morphism alpha^3, where alpha is the defining morphism

      0->10, 1->20, 2->0.

The other two fixed points are A286998 and A287174.

We have alpha = rho(tau), where tau is the Tribonacci morphism in A080843

      0->01, 1->02, 2->0,

and rho is the rotation operator.

An eigenvector computation of the incidence matrix of the morphism gives that 0,1, and 2 have frequencies 1/t, 1/t^2 and 1/t^3, where t is the tribonacci constant A058265.

Apparently (u(n)) := A287113. Thus U, the limit of u(n)/n, equals 1/(1/t), the tribonacci constant t. Also, V = A276800, and W = A276801.

(End)

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

EXAMPLE

1st iterate: 10

4th iterate: 1020100102010

7th iterate:  102010010201020100102010102010010201001020101020100102010201001020101020100102010.

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10]   (* A287112 *)

Flatten[Position[s, 0]] (* A287113 *)

Flatten[Position[s, 1]] (* A287114 *)

Flatten[Position[s, 2]] (* A287115 *)

CROSSREFS

Cf. A287113, A287114, A287115, A286998, A287174.

Sequence in context: A178781 A287174 A080843 * A296238 A221314 A087371

Adjacent sequences:  A287109 A287110 A287111 * A287113 A287114 A287115

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 20:50 EDT 2019. Contains 324145 sequences. (Running on oeis4.)