login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287104 Start with 0 and repeatedly substitute 0->10, 1->12, 2->0. 5
1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The fixed point of the morphism 0->10, 1->12, 2->0.  Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2.  Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  It appears that 1/U + 1/V + 1/W = 1, where

U = 3.079595623491438786010417...,

V = 2.324717957244746025960908...,

W = U + 1 = 4.079595623491438786010417....

From Michel Dekking, Sep 15 2019: (Start)

The incidence matrix of the morphism sigma: 0->10, 1->12, 2->0  has characteristic polynomial  chi(u) = u^3-2u^2+u-1. The real root of chi is lambda :=  Q/6 + 2/3*1/Q + 2/3, where

    Q = ( 100 + 12*sqrt(69) )^1/3.

An eigenvector of lambda is  (1, lambda^2-lambda, lambda-1).

The Perron-Frobenius Theorem gives that the asymptotic frequencies f0, f1 and f2 of the letters  0, 1, and 2 are

    f0 = 1/lambda^2,

    f1 = (lambda^2 - lambda +1)/lambda^3,

    f2 = (lambda - 1)/lambda^2.

Algebraic expressions for the constants U,V and W are then given by

    U = 1/f0,  V = 1/f1, W = 1/f2.

In particular, this shows that W = U + 1.

(End)

Conjecture: if n >=2, then u(n) - u(n-1) is in {2,3,4}, v(n) - v(n-1) is in {2,3}, and w(n) - w(n-1) is in {3,4,5}.

See A287105, A287106, and A287107 for proofs of these conjectures, with explicit expressions for u, v, and w. - Michel Dekking, Sep 15 2019

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

Index entries for sequences that are fixed points of mappings

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 2}, 2 -> 0}] &, {0}, 10] (* A287104 *)

Flatten[Position[s, 0]] (* A287105 *)

Flatten[Position[s, 1]] (* A287106 *)

Flatten[Position[s, 2]] (* A287107 *)

CROSSREFS

Cf. A287105, A287106, A287107.

Sequence in context: A025884 A257024 A124433 * A190483 A090239 A165276

Adjacent sequences:  A287101 A287102 A287103 * A287105 A287106 A287107

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 22:10 EST 2019. Contains 329079 sequences. (Running on oeis4.)