login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287063 Number of dominating sets in the n-crown graph. 2
3, 9, 39, 183, 833, 3629, 15291, 63051, 256605, 1036401, 4167815, 16720031, 66986169, 268173525, 1073185011, 4293787923, 17177379125, 68714234201, 274866897279, 1099488559527, 4397998277073, 17592085381629, 70368534463019, 281474540503643, 1125899000873613 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Crown Graph

Eric Weisstein's World of Mathematics, Dominating Set

Index entries for linear recurrences with constant coefficients, signature (11,-47,101,-116,68,-16).

FORMULA

a(n) = 4^n - 2^n*(n + 2) + n^2 + n + 3.

From Colin Barker, May 19 2017: (Start)

G.f.: x*(3 - 24*x + 81*x^2 - 126*x^3 + 92*x^4 - 32*x^5) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)).

a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6) for n>6.

(End)

MATHEMATICA

Table[4^n - 2^n (n + 2) + n^2 + n + 3, {n, 25}]

LinearRecurrence[{11, -47, 101, -116, 68, -16}, {3, 9, 39, 183, 833, 3629}, 25]

PROG

(PARI) Vec( x*(3 - 24*x + 81*x^2 - 126*x^3 + 92*x^4 - 32*x^5) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 19 2017

CROSSREFS

Sequence in context: A180741 A121101 A280066 * A080635 A278749 A208816

Adjacent sequences:  A287060 A287061 A287062 * A287064 A287065 A287066

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, May 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 20:10 EDT 2018. Contains 316325 sequences. (Running on oeis4.)