

A287049


Prime p1 of consecutive primes p1, p2, where p2  p1 = 8, and p1, p2 are in different centuries.


5



1193, 2699, 5399, 5693, 6599, 6899, 7499, 8093, 8699, 12899, 13799, 15299, 17099, 17393, 19793, 20399, 23993, 26099, 26399, 27893, 35099, 35393, 35999, 36299, 36599, 37493, 38699, 39293, 40499, 42299, 43793, 46499, 50093, 50993, 51599, 51899, 53093, 53993, 55799, 56393, 57593, 58199, 59399, 59699
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Since a(n) and a(n)+8 are consecutive primes either a(n)+7 or a(n)+1 is a multiple of 100; in addition a(n) must have the form 6k1. Therefore, every century spanned by a(n) and a(n)+8 is a multiple of 300. It appears that every multiple of 3 occurs as the difference round((a(n+1)a(n))/100); all multiples of 3 through 432 occur as these differences for a(n) < 1000000000.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


MATHEMATICA

a287049[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, 1]}&, Range[100, n, 100]], First[#]Last[#]==8&]]
a287049[60000] (* data *)
Select[Partition[Prime[Range[6100]], 2, 1], #[[2]]#[[1]]==8&&Floor[#[[1]]/ 100] != Floor[#[[2]]/100]&][[All, 1]] (* Harvey P. Dale, Oct 02 2019 *)


CROSSREFS

Cf. A001359, A158277, A160370, A160440, A160500.
Sequence in context: A040104 A103171 A032530 * A153379 A103172 A251923
Adjacent sequences: A287046 A287047 A287048 * A287050 A287051 A287052


KEYWORD

nonn


AUTHOR

Hartmut F. W. Hoft, May 18 2017


STATUS

approved



