This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286998 0-limiting word of the morphism 0->10, 1->20, 2->0. 6
 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Starting with 0, the first 5 iterations of the morphism yield words shown here: 1st:  10 2nd:  2010 3rd:  0102010 4th:  1020100102010 5th:  201001020101020100102010 The 2-limiting word is the limit of the words for which the number of iterations is congruent to 2 mod 3. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where U = 1.8392867552141611325518525646532866..., V = U^2 = 3.3829757679062374941227085364..., W = U^3 = 6.2222625231203986266745611011.... If n >=2, then u(n) - u(n-1) is in {1,2}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,6,7}. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 EXAMPLE 3rd iterate: 0102010 6th iterate: 01020101020100102010201001020101020100102010 MATHEMATICA s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 9] (* A286998 *) Flatten[Position[s, 0]] (* A286999 *) Flatten[Position[s, 1]] (* A287000 *) Flatten[Position[s, 2]] (* A287001 *) CROSSREFS Cf. A286999, A287000, A287001, A287112, A287174. Sequence in context: A137277 A039975 A016253 * A097796 A117188 A276084 Adjacent sequences:  A286995 A286996 A286997 * A286999 A287000 A287001 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 19:44 EDT 2019. Contains 323597 sequences. (Running on oeis4.)