Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Apr 29 2019 08:25:05
%S 1,1,10,1,55,2575,1,550,253000,250525000,1,5050,25007500,250025500000,
%T 2500000075000000,1,50500,2500300000,250002775000000,
%U 25000000255000000000,2500000000502500000000000,1,500500,250000750000,250000250500000000,250000000000750000000000,250000000000250500000000000000,250000000000000000750000000000000000
%N Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 10 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
%C Computed using Burnsides orbit-counting lemma.
%H María Merino, <a href="/A286921/b286921.txt">Rows n=0..32 of triangle, flattened</a>
%H M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque).
%F For even n and m: T(n,m) = (10^(m*n) + 3*10^(m*n/2))/4;
%F for even n and odd m: T(n,m) = (10^(m*n) + 10^((m*n+n)/2) + 2*10^(m*n/2))/4;
%F for odd n and even m: T(n,m) = (10^(m*n) + 10^((m*n+m)/2) + 2*10^(m*n/2))/4;
%F for odd n and m: T(n,m) = (10^(m*n) + 10^((m*n+n)/2) + 10^((m*n+m)/2) + 10^((m*n+1)/2))/4.
%e Triangle begins:
%e ==============================================================
%e n\m | 0 1 2 3 4
%e ----|---------------------------------------------------------
%e 0 | 1
%e 1 | 1 10
%e 2 | 1 55 2575
%e 3 | 1 550 253000 250525000
%e 4 | 1 5050 25007500 250025500000 2500000075000000
%e ...
%Y Cf. A225910, A283432, A283433, A283434, A286893, A286895, A286919, A286920.
%K nonn,tabl
%O 0,3
%A _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 16 2017