OFFSET
0,3
COMMENTS
Computed using Burnsides orbit-counting lemma.
LINKS
María Merino, Rows n=0..35 of triangle, flattened
M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
FORMULA
For even n and m: T(n,m) = (8^(m*n) + 3*8^(m*n/2))/4;
for even n and odd m: T(n,m) = (8^(m*n) + 8^((m*n+n)/2) + 2*8^(m*n/2))/4;
for odd n and even m: T(n,m) = (8^(m*n) + 8^((m*n+m)/2) + 2*8^(m*n/2))/4;
for odd n and m: T(n,m) = (8^(m*n) + 8^((m*n+n)/2) + 8^((m*n+m)/2) + 8^((m*n+1)/2))/4.
EXAMPLE
Triangle begins:
========================================================
n\m | 0 1 2 3 4
----|---------------------------------------------------
0 | 1
1 | 1 8
2 | 1 36 1072
3 | 1 288 66816 33693696
4 | 1 2080 4197376 17184194560 70368756760576
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
María Merino, Imanol Unanue, Yosu Yurramendi, May 16 2017
STATUS
approved