login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286679 Numbers of the form (2*prime(n)^2 + 1)/3. 1

%I

%S 17,33,81,113,193,241,353,561,641,913,1121,1233,1473,1873,2321,2481,

%T 2993,3361,3553,4161,4593,5281,6273,6801,7073,7633,7921,8513,10753,

%U 11441,12513,12881,14801,15201,16433,17713,18593,19953,21361,21841

%N Numbers of the form (2*prime(n)^2 + 1)/3.

%C Aside from p = 3, p = 1 or 2 mod 3 and p^2 = 1 mod 3. Thus 2p^2 + 1 is a multiple of 3.

%H G. C. Greubel, <a href="/A286679/b286679.txt">Table of n, a(n) for n = 3..1000</a>

%F Product_{n >= 3} (3a(n) + 1) / (3a(n) - 1) = (26/25) * (50/49) * (122/121) * ... = 54/(5Pi^2) = 1.0942687833372479315938982026650585002 (constant).

%F a(3) = 17; a(n + 1) = a(n) + 16 * A075888(n-2) for n > 3.

%F Numbers of the form 16k + 1 for some k. In particular k belongs to A001318, excluding those who sqrt(24 * A001318(k) + 1) are composites.

%t (2Prime[Range[3, 50]]^2 + 1)/3 (* _Alonso del Arte_, May 12 2017 *)

%o (PARI) {

%o forprime(n=5,300,

%o print1((2*n^2+1)/3", ")

%o )

%o }

%o (MAGMA) [(2*NthPrime(n)^2+1)/3: n in [3..50]]; // _Vincenzo Librandi_, May 15 2017 *)

%Y Cf. A075888, A001318.

%K nonn

%O 3,1

%A _Dimitris Valianatos_, May 12 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 12:10 EDT 2019. Contains 326177 sequences. (Running on oeis4.)