login
A286660
a(n) = a(n-1) + sum of base-100 digits of a(n-1), a(0) = 1.
5
1, 2, 4, 8, 16, 32, 64, 128, 157, 215, 232, 266, 334, 371, 445, 494, 592, 689, 784, 875, 958, 1025, 1060, 1130, 1171, 1253, 1318, 1349, 1411, 1436, 1486, 1586, 1687, 1790, 1897, 2012, 2044, 2108, 2137, 2195, 2311, 2345, 2413, 2450, 2524, 2573, 2671, 2768, 2863, 2954, 3037, 3104, 3139
OFFSET
0,2
LINKS
EXAMPLE
a(7) = 128 = 1 * 100^1 + 28 * 100^0. The sum of digits of a(8 - 1) = 128 in base 100 is therefore 1 + 28 = 29. a(8) = a(7) + the sum of digits of a(7) in base 100 is therefore 128 + 29 = 157.
MAPLE
g:= n -> n+convert(convert(n, base, 100), `+`):
A[0]:= 1:
for n from 1 to 100 do A[n]:= g(A[n-1]) od:
seq(A[i], i=0..100); # Robert Israel, May 22 2017
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n-1] + Total[IntegerDigits[a[n-1], 100]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2017 *)
NestList[#+Total[IntegerDigits[#, 100]]&, 1, 60] (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) a(n) = if(n < 8, return(1<<(n-1))); my(r = cr = 128); for(i=8, n, while(cr > 0, r += cr % 100; cr \= 100); cr = r); r \\ David A. Corneth, May 15 2017
CROSSREFS
Sequence in context: A036146 A036144 A327368 * A009641 A089889 A297526
KEYWORD
nonn,base
AUTHOR
Peter Weiss, May 12 2017
STATUS
approved