login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.
2

%I #10 May 26 2017 16:38:06

%S 1,1,8,3,14,8,42,10,21,14,76,19,90,42,63,36,152,21,208,44,148,76,322,

%T 53,210,90,228,117,434,63,625,136,296,152,402,78,702,208,375,152,860,

%U 148,988,251,324,322,1271,169,903,210,627,324,1430,228,943,375,816,434,1828,187,1890,625,777,528,1273,296,2344,560,1220,402,2698,300,2700,702,901

%N Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.

%H Antti Karttunen, <a href="/A286568/b286568.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)).

%o (PARI)

%o A000010(n) = eulerphi(n);

%o A001511(n) = (1+valuation(n,2));

%o A286357(n) = A001511(sigma(n));

%o A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n));

%o (Scheme) (define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2)))

%o (Python)

%o from sympy import divisor_sigma as D, totient

%o def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2

%o def a001511(n): return bin(n)[2:][::-1].index("1") + 1

%o def a286357(n): return a001511(D(n))

%o def a(n): return T(totient(n), a286357(n)) # _Indranil Ghosh_, May 26 2017

%Y Cf. A000010, A000027, A286154, A286160, A286357, A286451, A286572.

%K nonn

%O 1,3

%A _Antti Karttunen_, May 26 2017