login
A286564
Triangular table A286563 reversed.
4
1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 3, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
1,9
COMMENTS
See A286563.
EXAMPLE
The first fifteen rows of this triangular table:
1,
1, 1,
1, 0, 1,
1, 0, 2, 1,
1, 0, 0, 0, 1,
1, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 3, 1,
1, 0, 0, 0, 0, 0, 2, 0, 1,
1, 0, 0, 0, 0, 1, 0, 0, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
MATHEMATICA
Table[If[k == 1, 1, IntegerExponent[n, k]], {n, 15}, {k, n, 1, -1}] // Flatten (* Michael De Vlieger, May 20 2017 *)
PROG
(Scheme) (define (A286564 n) (A286561bi (A002024 n) (A004736 n))) ;; For A286561bi see A286561.
(Python)
def T(n, k):
i=1
if k==1: return 1
while n%(k**i)==0:
i+=1
return i-1
for n in range(1, 21): print [T(n, k) for k in range(1, n + 1)] [::-1] # Indranil Ghosh, May 20 2017
CROSSREFS
Cf. A169594 (row sums).
Sequence in context: A064692 A286106 A079677 * A316359 A080080 A093662
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, May 20 2017
STATUS
approved