login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286544 Restricted growth sequence of A285333. 2
1, 2, 3, 3, 4, 5, 5, 4, 6, 5, 7, 6, 8, 9, 9, 5, 10, 9, 11, 8, 12, 13, 14, 9, 13, 6, 15, 11, 16, 17, 17, 8, 18, 17, 19, 13, 20, 17, 21, 8, 22, 17, 23, 24, 25, 23, 26, 13, 27, 11, 28, 16, 29, 30, 31, 17, 32, 9, 33, 34, 24, 35, 35, 6, 36, 37, 38, 39, 40, 41, 42, 13, 43, 44, 45, 28, 46, 28, 34, 6, 47, 48, 49, 21, 50, 35, 51, 39, 52, 53, 54, 55, 56, 57, 58, 11, 59 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8191

PROG

(PARI)

allocatemem(2^30);

rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences, invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences, invec[i], i); outvec[i] = u; u++ )); outvec; };

write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }

A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler

A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016

A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014

A065642(n) = { my(r=A007947(n)); if(1==n, n, n = n+r; while(A007947(n) <> r, n = n+r); n); };

A285332(n) = { if(n<=1, n+1, if(!(n%2), A019565(A285332(n/2)), A065642(A285332((n-1)/2)))); };

A285333(n) = if(!n, n, if(!(n%2), A285332(n/2), A048675(A285332(n))));

write_to_bfile(0, rgs_transform(vector(8192, n, A285333(n-1))), "b286544.txt");

CROSSREFS

Cf. A285332, A285333, A286543.

Sequence in context: A078338 A278149 A007306 * A238690 A229835 A196155

Adjacent sequences:  A286541 A286542 A286543 * A286545 A286546 A286547

KEYWORD

nonn

AUTHOR

Antti Karttunen, May 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 00:55 EDT 2019. Contains 324217 sequences. (Running on oeis4.)