The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286522 Floor of the volume of the d-th Chern-Vaaler star body. 5
 2, 4, 8, 14, 23, 36, 52, 72, 93, 116, 138, 158, 174, 185, 191, 191, 186, 176, 162, 146, 128, 110, 93, 77, 62, 49, 38, 29, 22, 16, 12, 8, 6, 4, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Unimodal: increases from 2 to a maximum of 191, then decreases to 0 = a(d) for d >= 38 (see Grizzard and Gunther, 2016, Lemma 2.2). See A286523 for other comments, references, links, formulas, and programs. For the "monic slice" of the star body, see A288756, A288757, A288758. LINKS Robert Grizzard and Joseph Gunther, Slicing the stars: counting algebraic numbers, integers, and units by degree and height, arXiv:1609.08720 [math.NT] 2016. FORMULA a(n) = floor(A286523(n) / A286524(n)). MATHEMATICA a[d_] := (e = Floor[(d-1)/2]; 2^(d+1) (d+1)^e Product[(2k)^(d-2k)/(2k+1)^( d+1-2k), {k, 1, e}]) // Floor; Table[a[d], {d, 0, 39}] (* Jean-François Alcover, Dec 04 2018, after Jonathan Sondow in A286523 *) PROG (PARI) a(n) = floor(2^(n+1)*(n+1)^((n-1)\2)*prod(k=1, (n-1)\2, (2*k)^(n-2*k)/(2*k+1)^(n+1-2*k))); \\ Jinyuan Wang, Mar 05 2020 CROSSREFS Cf. A286523, A286524, A288756, A288757, A288758. Sequence in context: A259392 A261968 A138526 * A201347 A089054 A055291 Adjacent sequences:  A286519 A286520 A286521 * A286523 A286524 A286525 KEYWORD nonn AUTHOR Jonathan Sondow, May 26 2017 EXTENSIONS More terms from Jinyuan Wang, Mar 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 05:58 EDT 2020. Contains 337264 sequences. (Running on oeis4.)