

A286517


a(n) = b(2*n)/b(2*n+1) where b(n) = denominator(Bernoulli_{n}(x)).


5



3, 5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 5, 3, 29, 31, 11, 35, 37, 13, 41, 43, 1, 47, 7, 17, 53, 55, 19, 59, 61, 7, 13, 67, 23, 71, 73, 5, 77, 79, 3, 83, 17, 29, 89, 13, 31, 19, 97, 11, 101, 103, 7, 107, 109, 37, 113, 23, 13, 119, 11, 41, 5, 127, 43, 131, 19, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is an odd integer for all n, a(n)=1 infinitely often, and a(n)=p infinitely often for every odd prime p. See Cor. 2 and Cor. 3 in "The denominators of power sums of arithmetic progressions". See also "Powersum denominators".


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000
B. C. Kellner, On a product of certain primes, arXiv:1705.04303 [math.NT] 2017; J. Number Theory, 179 (2017), 126141.
B. C. Kellner and J. Sondow, Powersum denominators, arXiv:1705.03857 [math.NT] 2017; Amer. Math. Monthly, 124 (2017), 695709.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, arXiv:1705.05331 [math.NT] 2017; Integers, 18 (2018), article A95.


FORMULA

a(n) = A144845(2*n) / A144845(2*n+1) for n >= 1.


MATHEMATICA

b[n_] := Denominator[ Together[ BernoulliB[n, x]]]; Table[ b[2 n]/b[2 n + 1], {n, 1, 67}]


CROSSREFS

Cf. A027642, A064538, A144845, A195441, A286515, A286516.
Sequence in context: A120374 A088836 A076565 * A199423 A100029 A099984
Adjacent sequences: A286514 A286515 A286516 * A286518 A286519 A286520


KEYWORD

nonn


AUTHOR

Bernd C. Kellner and Jonathan Sondow, May 12 2017


STATUS

approved



