login
Compound filter (smallest prime dividing n & prime signature of conjugated prime factorization): a(n) = P(A055396(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.
5

%I #11 May 14 2017 15:55:12

%S 0,2,8,2,18,11,40,2,8,22,71,11,97,46,30,2,143,11,179,22,93,92,262,11,

%T 18,121,8,46,335,154,417,2,212,211,69,11,540,254,302,22,679,326,794,

%U 92,30,379,918,11,40,22,467,121,1051,11,234,46,530,529,1242,154,1344,631,93,2,744,704,1615,211,822,326,1790,11,1912,904,30,254,140,947,2167,22,8

%N Compound filter (smallest prime dividing n & prime signature of conjugated prime factorization): a(n) = P(A055396(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.

%C Note that as the other component of a(n) we use A286621 instead of A278221, because of latter sequence's unwieldy large terms.

%C For all i, j: a(i) = a(j) => A243055(i) = A243055(j).

%C For all i, j: a(i) = a(j) => A286470(i) = A286470(j).

%H Antti Karttunen, <a href="/A286455/b286455.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a>

%F a(n) = (1/2)*(2 + ((A055396(n)+A286621(n))^2) - A055396(n) - 3*A286621(n)).

%o (Scheme) (define (A286455 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A286621 n)) 2) (- (A055396 n)) (- (* 3 (A286621 n))) 2)))

%Y Cf. A000027, A055396, A122111, A243055, A278221, A285334, A286621, A286454, A286456.

%K nonn

%O 1,2

%A _Antti Karttunen_, May 14 2017