

A286445


Number of nonequivalent ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^212) of 1 X 1 X 1 tiles.


5



0, 2, 14, 97, 398, 1290, 3366, 7731, 15888, 30248, 53850, 91147, 147496, 230290, 348148, 512457, 736204, 1035986, 1430420, 1942691, 2598470, 3429064, 4468784, 5758755, 7343670, 9276330, 11613714, 14422313, 17773458, 21749506, 26438362, 31940587, 38363044, 45826992
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,2


COMMENTS

Rotations and reflections of tilings are not counted. If they are to be counted, see A286438. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A279112.


LINKS

Heinrich Ludwig, Table of n, a(n) for n = 3..100
Heinrich Ludwig, Illustration of tiling a 4X4X4 area
Index entries for linear recurrences with constant coefficients, signature (3,0,7,3,6,0,6,3,7,0,3,1).


FORMULA

a(n) = (n^6 9*n^5 +6*n^4 +165*n^3 447*n^2 372*n +1736)/36 + IF(MOD(n, 2) = 1, n^2 +6*n 9)/2 + IF(MOD(n, 3) = 0, 2)/9 for n >= 4.
G.f.: x^4*(2 + 8*x + 55*x^2 + 121*x^3 + 188*x^4 + 121*x^5 + 44*x^6  39*x^7  22*x^8  5*x^9 + 5*x^10 + 2*x^11) / ((1  x)^7*(1 + x)^3*(1 + x + x^2)).  Colin Barker, May 12 2017


EXAMPLE

There are 2 nonequivalent ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.


PROG

(PARI) concat(0, Vec(x^4*(2 + 8*x + 55*x^2 + 121*x^3 + 188*x^4 + 121*x^5 + 44*x^6  39*x^7  22*x^8  5*x^9 + 5*x^10 + 2*x^11) / ((1  x)^7*(1 + x)^3*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, May 12 2017


CROSSREFS

Cf. A279112, A286438, A286443, A286444, A286446.
Sequence in context: A141146 A267913 A204699 * A322262 A109808 A304444
Adjacent sequences: A286442 A286443 A286444 * A286446 A286447 A286448


KEYWORD

nonn,easy


AUTHOR

Heinrich Ludwig, May 12 2017


STATUS

approved



