login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286443 Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles. 5
1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

The triangle T(n, k) is irregularly shaped: For n >= 4: 0 <= k <= n^2/4 if n is even, 0 <= k <= (n^2 -9)/4 if n is odd. First row corresponds to n = 1.

Rotations and reflections of tilings are not counted. If they are to be counted, see A286436. Tiles of the same size are indistinguishable.

For an analogous problem concerning square tiles, see A236679.

LINKS

Heinrich Ludwig, Table of n, a(n) for n = 1..140

EXAMPLE

The triangle begins with T(1, 0)

   1;

   1,    1;

   1,    1;

   1,    3,    3,    2,    1;

   1,    4,   10,   14,    6;

   1,    6,   32,   97,  142,  105,   46,   14,    3,    1;

   1,    8,   70,  398, 1280, 2386, 2574, 1569,  524,   87,    3;

T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.

CROSSREFS

Cf. A236679, A286436, A286444, A286445, A286446.

Sequence in context: A278702 A060574 A283987 * A075522 A186144 A090544

Adjacent sequences:  A286440 A286441 A286442 * A286444 A286445 A286446

KEYWORD

nonn,tabf

AUTHOR

Heinrich Ludwig, May 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 00:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)